MEMOIRE

Pour l’obtention du diplôme de Master en chimie

Option : Chimie de matériaux

LES LIAISONS HYDROGÈNE DANS LE COMPOSÉ BIS
(2-AMINO-3-CARBOXYPYRIDINIUM) SULFATE
TRIHYDRATE

Présenté par : Khadri Amina
Sous la direction de : Dr. Berrah Fadila

Soutenu le : 23/06/2011
Devant le jury de soutenance suivant :
Pr. Zouchoune Bachir
Dr. Bouacida Sofiane

2010/2011
Dédicace

Je dédie ce mémoire :

A mes parents

A ma grande mère

A mes frères et mes sœurs :

AMEL, YACINE, MOUHAMMED, ZIENEB

A mes amies

A ma famille

A TOUS LES GENS QUE J’AIME.
<p>	Sommaire
INTRODUCTION GENERALE	1
PREMIERE PARTIE	
I- LES LIAISONS HYDROGENE	2
I-1- Introduction	2
I-2- Historique	2
I-3- Propriétés des liaisons hydrogènes	5
I-3-a- Directivité de la liaison	5
I-3-b- Processus coopératif	6
I-4- Définition et catégories des liaisons hydrogènes	6
I-4-1- Liaisons hydrogènes fortes	8
I-4-2- Liaisons hydrogènes modérées	8
I-4-3- Liaisons hydrogènes faibles	8
I-5- Caractéristiques des liaisons hydrogènes	10
I-6- Description d'un réseau de liaisons hydrogènes dans une structure cristalline (théorie des graphes du modèle des liaisons hydrogènes)	12
II- LA PYRIDINE ET SES DERIVES	15
II-1- Introduction	15
II-2- Structure chimique de la pyridine et de ses dérives	17
II-3- Propriétés physiques	17
II-4- Propriétés chimique	18
II-5- L’acide 2-aminopyridine-3-carboxylique	19
III- DIFRACTION DES RAYONS X	21
III-1- Généralités sur les rayons x	21
III-1-1- Historique	21
III-1-2- Nature des rayons X	21
III-1-3- Production des rayons X	22
III-1-3-a- Les tubes à rayons X	22
III-1-3-b- Le rayonnement synchrotron	23
III-1-4- Interaction rayon X-matière	24
III-1-5- Diffraction des rayons X	25
III-2- Principe de la détermination structurale	27
III-2-1- Introduction	27
III-2-2- Etapes de la résolution structurale par les méthodes directes	28
III-2-3- Affinement de la structure	30
III-2-4- Critères de la qualité de l'affinement	31
DEUXIEME PARTIE	
I- Synthèse et étude structurale du compose Bis (2-amino-3-carboxypyridinium) sulfate trihydrate	32
I-1- Synthèse	32
I-2- Etude cristallographique	32
I-2-1- Enregistrement des intensités	32
I-2-2- Résolution et affinement de la structure	32
I-3- Description de la structure	37
I-3-1- L’entité anionique	39
I-3-2- L’entité cationique	39
I-4- Les liaisons hydrogène	40
I-4-1- Environnement des différentes entités	41
I-5- Graphe du modèle des liaisons hydrogènes de la structure	43
CONCLUSION	44
REFERENCES BIBLIOGRAPHIQUE	45
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>Coordination tétraédrique de l’eau solide par des liaisons hydrogène.</td>
<td>5</td>
</tr>
<tr>
<td>I-2</td>
<td>Schéma des différentes configurations des liaisons hydrogène.</td>
<td>11</td>
</tr>
<tr>
<td>I-3</td>
<td>Liaisons hydrogènes à trois centres et chélates.</td>
<td>12</td>
</tr>
<tr>
<td>I-4</td>
<td>Exemple de modèle de liaisons hydrogène dans la cellulose.</td>
<td>13</td>
</tr>
<tr>
<td>II-1</td>
<td>Exemples d’hétérocycles naturels.</td>
<td>15</td>
</tr>
<tr>
<td>II-2</td>
<td>Exemples d’hétérocycles synthétiques et leur rôle.</td>
<td>16</td>
</tr>
<tr>
<td>II-3</td>
<td>Exemples d’alkyl pyridine d’importance commerciale.</td>
<td>17</td>
</tr>
<tr>
<td>III-1</td>
<td>Le spectre électromagnétique.</td>
<td>22</td>
</tr>
<tr>
<td>III-2</td>
<td>Schéma d’un tube à rayon X.</td>
<td>23</td>
</tr>
<tr>
<td>III-3</td>
<td>L’anneau du synchrotron de l’ESRF à Grenoble.</td>
<td>24</td>
</tr>
<tr>
<td>III-4</td>
<td>La diffraction d’un faisceau de rayon X correspond à une réflexion de l’onde incidente sur des plans atomiques denses.</td>
<td>26</td>
</tr>
<tr>
<td>III-5</td>
<td>la sphère d’Ewald permet une représentation simple de la condition de diffraction. Le cristal est situé en O, et l’origine du réseau réciproque est en E. Chaque nœud ne diffracte que lorsqu’il est situé sur la sphère d’Ewald.</td>
<td>26</td>
</tr>
<tr>
<td>I-1</td>
<td>schéma du composé Bis (2-amino-3-carboxypyridinium) sulfate trihydrate.</td>
<td>32</td>
</tr>
<tr>
<td>I-2</td>
<td>Unité asymétrique du composé Bis (2-amino-3-carboxypyridinium) sulfate trihydrate.</td>
<td>37</td>
</tr>
<tr>
<td>I-3</td>
<td>Projection de la structure du composé étudié suivant l’axe a.</td>
<td>38</td>
</tr>
<tr>
<td>I-4</td>
<td>Projection de la structure du composé étudié suivant l’axe b.</td>
<td>38</td>
</tr>
<tr>
<td>I-5</td>
<td>L’enchaînement des anions sulfates et des molécules d’eau suivant l’axe c.</td>
<td>38</td>
</tr>
<tr>
<td>I-6</td>
<td>Géométrie, distances et angles dans l’entité anionique.</td>
<td>39</td>
</tr>
<tr>
<td>I-7</td>
<td>Les deux entités cationiques (A et B).</td>
<td>40</td>
</tr>
<tr>
<td>Figure I-8</td>
<td>Environnement de l'entité anionique.</td>
<td>41</td>
</tr>
<tr>
<td>Figure I-9</td>
<td>L’environnement du l’entité cationique(A).</td>
<td>42</td>
</tr>
<tr>
<td>Figure I-10</td>
<td>Environnement de la molécule H$_2$O1W.</td>
<td>42</td>
</tr>
<tr>
<td>Figure I-11</td>
<td>Environnement de la molécule H$_2$O3W.</td>
<td>42</td>
</tr>
<tr>
<td>Figure I-12</td>
<td>Environnement de la molécule H$_2$O2W.</td>
<td>43</td>
</tr>
</tbody>
</table>
Liste des tableaux

<table>
<thead>
<tr>
<th>Tableau I-1</th>
<th>Propriétés des liaisons hydrogène fortes, modérées et faibles.</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tableau I-2</td>
<td>Groupes donneurs et accepteurs des différentes catégories de liaisons hydrogène.</td>
<td>9</td>
</tr>
<tr>
<td>Tableau II-1</td>
<td>Quelques propriétés physiques de la pyridine.</td>
<td>18</td>
</tr>
<tr>
<td>Tableau II-2</td>
<td>Paramètres de mailles et groupes d’espaces des sels des acides nicotiniques et 2-amino-nicotinique avec les acides minéraux.</td>
<td>20</td>
</tr>
<tr>
<td>Tableau I-1</td>
<td>Données cristallographiques et conditions d’enregistrement et d’affinement du composé bis (2-amino-3-carboxypryridinium) sulfate trihydrate.</td>
<td>33</td>
</tr>
<tr>
<td>Tableau I-2</td>
<td>Coordonnées atomique et facteurs d’agitation thermique équivalents et isotropes.</td>
<td>34</td>
</tr>
<tr>
<td>Tableau I-3</td>
<td>Facteurs d’agitation thermique anisotropes.</td>
<td>35</td>
</tr>
<tr>
<td>Tableau I-4</td>
<td>Distances inter atomique (Å).</td>
<td>35</td>
</tr>
<tr>
<td>Tableau I-5</td>
<td>Angles de liaisons (°).</td>
<td>36</td>
</tr>
<tr>
<td>Tableau I-6</td>
<td>Angles de torsion dans les cations A et B.</td>
<td>40</td>
</tr>
<tr>
<td>Tableau I-7</td>
<td>Liaisons hydrogène formées entre les différentes entités (distances en Å et angles en °).</td>
<td>41</td>
</tr>
</tbody>
</table>
INTRODUCTION GENERALE
INTRODUCTION GÉNÉRALE

La science des matériaux est une discipline qui gère la conception des matériaux d'une part, et étudie leurs structures et leurs propriétés (magnétiques, électriques, mécaniques, thermiques) d’autre part.

Au cours du 20ème siècle, cette science a connu des progrès considérables et cela est dû à la mise au point de nouvelles techniques en particulier celle attachée à l’élaboration des matériaux et à leurs caractérisations. Les techniques de caractérisation des matériaux sont nombreuses et variées : méthodes d'analyse immédiate (centrifugation), techniques d'analyse des constituants d'un mélange (chromatographie), méthodes d'analyse élémentaire (spectrométrie d'émission et d'absorption) et méthodes d'analyse structurale des molécules (RMN, diffraction des neutrons et des électrons).

Parmi toutes ces techniques, la diffraction des rayons X reste une technique d'investigation irremplaçable ; elle est devenue une analyse de routine dans de très nombreux laboratoires. Les développements modernes de la diffraction à l’aide de sources conventionnelles de rayons X, sont mis au profit pour l’investigation de nouveaux systèmes tels que les biomolécules et les matériaux hybrides.

Dans le présent travail, nous avons réussi à synthétiser et à caractériser par diffraction des rayons X sur monocristal un nouveau composé à base d’un hétérocycle azoté qui est l’acide 2-amino-nicotinique et de l’acide sulfurique. Dans ce composé une variété de liaisons hydrogène a été observée, cela prouve encore une fois l’influence de ce type d’interaction sur les édifices cristallins supramoléculaires.

Le présent mémoire est divisé en deux parties : une première partie dans laquelle nous avons exposé quelques généralités sur :

1- les liaisons hydrogène leurs natures, leur classification et à la théorie des graphes.
2- les N-hétérocycles et plus spécialement à la pyridine et ses dérivés
3- la DRX et aux méthodes directes de résolution structurale.

Une seconde partie dans laquelle nous avons présenté successivement la synthèse, l’étude cristallographique et la description de la structure du composé Bis (2-amino-3 carboxyapyridinium) sulfate trihydrate [1].
PREMIERE PARTIE

GENERALITES
I- LES LIAISONS HYDROGENE

I-1- INTRODUCTION :

Les milieux vivants sont le siège de liaisons fortes et de liaisons faibles, ils sont constitué d'atomes et de molécules, qui sont liés entre eux par plusieurs types de liaisons (covalente, ionique, Van der waals….) d'intensités et de propriétés différentes. De ces propriétés vont découler la forme spatiale des molécules.

-Liaisons fortes, appelées liaisons covalentes, elles sont utilisées pour créer des structures très stables, capables de résister aux variations de température, de pression et de PH du milieu environnant.

-Deux ions de charges opposées s'attirent, ils établissent une liaison appelée "liaison ionique". Les propriétés des liaisons ioniques sont presque aussi puissantes que les liaisons covalentes, mais leurs propriétés sont très différentes.

Quand aux liaisons faibles (interactions de Van der waals, liaisons polaire ou liaisons hydrogène, liaisons hydrophobe) sont utilisées pour assurer la cohésion de structures transitoires qui nécessitent d'être formées et détruites rapidement [2].

Ce qui nous intéresse le plus dans notre étude est les liaisons hydrogène, alors qu'est ce que les liaisons hydrogène ? Quelles sont leurs origines et leurs caractéristiques ?

I-2-HISTORIQUE :

L'importance des liaisons hydrogène dans l'organisation structurale des composés dans leurs différents états (gaz, liquide et solide) a été mise en évidence bien avant leur identification. En effet, toutes les études structurales faites entre le 19ème et le 20ème siècle, font part de certaines observations qui, après recul, ne sont autres que les liaisons hydrogène.

étaient généralement décrites comme associations et les liaisons intramoléculaires étaient décrites comme chélation.

L’arrivée de la diffraction des rayons X a permis la publication d’un certain nombre d’études de composés qui sont connus maintenant possédant des structures basées sur les liaisons hydrogène mais dans lesquels le terme "liaisons hydrogène" n’a jamais été utilisé par leurs auteurs. La notion de liaisons hydrogène est apparue après 1930. Pauling écrivit un papier sur une étude générale de la nature des liaisons chimiques dans lequel il utilisa pour la première fois le terme "liaison hydrogène" (Pauling, 1931) [7]. Il releva dans ce papier que ces liaisons sont formées par l’atome d’oxygéne dans certains cas et par l’atome d’azote dans d’autres cas. Huggins discuta le rôle de l’hydrogène dans la conduction des ions hydrogène et hydroxyle dans l’eau, et a employé le terme "liaison hydrogène" (Huggins, 1931) [8].

Cependant, c’est dans le chapitre sur les liaisons hydrogène dans le livre de Pauling sur la nature des liaisons chimiques (Pauling, 1939) [15] que le concept de la liaison hydrogène a été réellement introduit au monde de la chimie. Pauling, dans ce chapitre, a donné deux points de vue : "dans certaines conditions un atome d’hydrogène est attire par des forces plutôt fortes à deux atomes au lieu d’un seul, dans ce cas il est considéré comme agissant en tant que lien entre eux, ce lien s’appelle liaison hydrogène ". Pauling continue
plus loin pour indiquer "un atome d'hydrogène avec seulement une orbitale stable ne peut pas former plus qu'une liaison covalente pure et l'attraction des deux atomes observée dans la formation de la liaison hydrogène est due en grande partie aux forces ioniques".

Avant 1936, les anomalies relevées dans les propriétés physiques et les mesures thermodynamiques de certains composés ont fourni l'évidence de la présence d'un phénomène qui est maintenant connu comme "la liaison hydrogène". En 1936, après les découvertes de Liddell et Wulf (Liddell et Wulf, 1933) [16], Hilbert et ses collaborateurs (Hilbert et al. 1936) [17] et Hendricks et ses collaborateurs (Hendricks et al. 1936) [18], on a réalisé que la méthode relativement accessible de la spectroscopie infrarouge pourrait fournir un outil remarquablement sensible à la mise en évidence de la formation de la liaison hydrogène par les déplacements des bandes X-H. C'était le point de départ de l'étude des liaisons hydrogène par spectroscopie infrarouge dans les phases liquides et solides. Un nombre important de travaux sur l'identification des liaisons hydrogène a été publié après cette découverte (environ 20 articles par an), ce qui a mené à la mise en évidence des groupes donneurs et des groupes accepteurs engageant une liaison hydrogène, et de la présence de liaisons fortes et de liaisons faibles. La spectroscopie infrarouge a continué à être le seul outil pour l'étude de la liaison d'hydrogène jusqu'à 1951 où Liddell et Ramsey publièrent un article dans lequel ils préconisèrent la spectroscopie RMN comme autre méthode d'identification de la liaison hydrogène (Liddell et Ramsey, 1951) [19]. Cette méthode spectroscopique fut bien décrite par Pople, Schneider, et Bernstein, (Pople et al. 1959) [20] mais était toujours moins appliquée que la spectroscopie infrarouge du fait de la complexité des liaisons hydrogène en solution. Le développement de la RMN du 13C et du 1H pour les composés à l'état solide et notamment pour les cristaux a fourni un outil très efficace dans l'étude des liaisons hydrogènes. Une étude des applications de la RMN du 13C et du 1H pour résoudre les problèmes structuraux de cristaux de composés contenant des liaisons hydrogènes a été publiée par Etter, Reutzel, et Vojta (Etter et al. 1990) [21].

La diffraction des rayons X et des neutrons sont les méthodes les plus efficaces pour localiser l'atome d'hydrogène engagé dans une liaison hydrogène. Les plus grandes avancées observées pour la diffraction neutronique ne sont pas seulement dues à l'amélioration des diffractomètres ou des méthodes de détermination structurale, comme pour la diffraction des rayons X, mais également à la disponibilité des cryostats qui permettent une baisse de la température jusqu'à 5°K. Le passage des appareils de
diffraction des rayons X utilisant les films aux appareils utilisant les détecteurs uni et bidimensionnels et la possibilité de collecte de données à basse température utilisant l'azote ou l'hélium liquides ont permis une augmentation de la précision des mesures d'intensités diffractées ce qui a rendu la localisation de l'atome d'hydrogène possible. La capacité de localiser cet atome a augmenté avec la sophistication des diffractomètres automatiques et des logiciels de traitement des données.

Les méthodes d'études de la liaison hydrogène peuvent être classées par catégorie comme suit : (1) spectroscopique, (2) diffraction, (3) thermo chimique, et (4) théorique. Les méthodes spectroscopiques incluent infrarouge, Raman, et RMN. La diffraction inclut la diffraction de rayon X et des neutrons. La méthode thermo chimique inclut la calorimétrie de chauffage des mélanges ou des dilutions et de la détermination des enthalpies directement par la mesure des constantes d'équilibre. Le calcul théorique inclut la méthode ab-initio, la méthode semi empirique, et la méthode empiriques.

I-3- PROPRIETES DES LIAISONS HYDROGENES :

La liaison hydrogène aux propriétés suivantes :

I-3-1- DIRECTIVITE DE LA LIAISON :

L’angle de liaison est proche de 180°. Le proton pointe directement vers le doublet électronique non liant de l’atome accepteur. Cette directionnalité est une conséquence des deux contributions attractives majeures qui sont la contribution électrostatique et le transfert de charge, toutes deux hautement directionnelles. Elle est d’une très grande importance dans l’architecture moléculaire de la glace ou de l’eau (Figure I-1) à courte distance, ou encore dans l’organisation des structures biologiques régulières telles que les protéines (comme celle de l’hélice a) ou l’ADN [22,23].

![Figure I-1 : Coordination tétraédrique de l’eau solide par des liaisons hydrogènes.](image)
1-3-2- PROCESSUS COOPERATIF :

La formation d’une liaison hydrogène entre deux molécules augmente la polarité de chacune d’elles. Cela a pour effet d’accroître la propriété d’autres atomes de la molécule, non encore engagés dans une liaison hydrogène, à être donneur ou accepteur de proton et à favoriser ainsi la formation d’une deuxième liaison, et ainsi de suite \[22,24\].

a. Les liaisons hydrogène peuvent se tordre, se rompre ou se restaurer en fonction de la température. Cette propriété donne aux architectures moléculaires assemblées par liaisons hydrogène, souplesse et possibilité d’évoluer, ce que ne peuvent faire les liaisons covalentes qui sont trop énergétiques et donc complètement rigides aux mêmes températures. Cette souplesse et ces possibilités d'évolution sont indispensables aux molécules biologiques.

b. Enfin, la liaison hydrogène est capable de transférer des ions \(H^+\) entre les molécules qu'elle lie. Cette propriété est très importante car elle est à l’origine de la réactivité des milieux aqueux. Sans elle, ceux-ci seraient inertes et la vie ne serait pas possible, car les molécules biologiques doivent en permanence réagir pour rester actives. On soupçonne que ce sont les molécules d’eau qui permettent ces transferts d’ions \(H^+\) en établissant certaines liaisons hydrogène spécifiques, en d'autres termes qu'elles donnent le feu vert pour que des molécules telles que les protéines puissent réagir. C'est peut-être là leur rôle fondamental, et ce serait grâce à cela que la vie est née dans l'eau et s'y poursuit !

1-4- DEFINITION ET CATEGORIES DES LIAISONS HYDROGENE :

La liaison hydrogène est une interaction attractive entre un atome d’hydrogène lié de façon covalente à un atome donneur (noté D) fortement électronégatif tels que l’azote (électronégativité : \(\chi = 3\)), l’oxygène (\(\chi = 3,5\)) et le fluor (\(\chi = 4\)), et un atome accepteur (noté A) similaire faisant partie ou non de la même molécule que celle du donneur. La longueur de la liaison hydrogène est définie comme la distance entre les centres de ces deux atomes. Pour qu'un atome A soit accepteur il doit avoir un doublet libre ou des électrons \(\pi\) polarisables \[25-26\].

La valeur de la liaison hydrogène se situe dans un intervalle dont les limites supérieures et inférieures sont définies par les interactions de Van Der Waals et les liaisons
covalentes. Une forte liaison hydrogène ressemble à une liaison covalente et une liaison hydrogène faible ressemble à une interaction type Van Der Waals.

On définit la liaison hydrogène par trois variables :

- La distance donneur-hydrogène : D-H.
- L'interaction hydrogène-accepteur : H…A.
- L'angle donneur-hydrogène-accepteur : D-H…A

Il existe une relation entre l'interaction H…A et l'angle D-H…A, plus l'interaction H…A est forte plus l'angle D-H…A est grand et plus la liaison hydrogène est faible plus l'angle est petit.

Suivant les valeurs de ces trois variables, on peut classer les liaisons hydrogène dans trois catégories différentes : liaisons fortes, liaisons modérées et liaisons faibles (tableau I-1). Ces types de liaisons hydrogène peuvent être intramoléculaires quand le donneur et l'accepteur font partie de la même molécule et intermoléculaires quand ils font partie de deux molécules différentes. Quand D et A sont identiques les liaisons hydrogène sont dites homonucléaires et quand D et A sont différents elles sont dites hétéronucléaires [27].

Tableau I-1 : Propriétés des liaisons hydrogène fortes, modérées et faibles.

<table>
<thead>
<tr>
<th></th>
<th>Liaisons fortes</th>
<th>Liaisons modérées</th>
<th>Liaisons faibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>L'interaction D-H…A</td>
<td>Majoritairement covalente</td>
<td>Majoritairement covalente</td>
<td>Majoritairement électrostatique</td>
</tr>
<tr>
<td>Distances</td>
<td>D-H ≈ H…A</td>
<td>D-H < H…A</td>
<td>D-H << H…A</td>
</tr>
<tr>
<td>H…A (Å)</td>
<td>1.2-1.5</td>
<td>1.5-2.2</td>
<td>2.2-3.2</td>
</tr>
<tr>
<td>D…A (Å)</td>
<td>2.2-2.5</td>
<td>2.5-3.2</td>
<td>3.2-4.0</td>
</tr>
<tr>
<td>D-H…A (°)</td>
<td>175-180</td>
<td>130-180</td>
<td>90-150</td>
</tr>
<tr>
<td>Energie de la liaison (kcal. mol⁻¹) [Emsley, 1980]</td>
<td>14-40</td>
<td>4-15</td>
<td><4</td>
</tr>
<tr>
<td>Vibrations symétriques de valence νS en IR (cm⁻¹)</td>
<td>25%</td>
<td>10-25%</td>
<td><10%</td>
</tr>
<tr>
<td>RMN H1 ppm</td>
<td>14-22</td>
<td><14</td>
<td></td>
</tr>
<tr>
<td>Exemples</td>
<td>- Dimères en phase gazeuse d'acides forts ou de bases fortes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pseudohydrates.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Complexes d'acide fluorhydrique.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Acides.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Alcools.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Phénols</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Hydrates.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Toutes les Molécules biologiques.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Dimères en phase gazeuse d'acides faibles ou de bases faibles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Liaisons type C-H…O/N.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Liaisons type O/N-H…π.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I-4-1-LIAISONS HYDROGENE FORTES :

Les liaisons hydrogène fortes sont formées quand il y'a déficience en électrons au niveau du donneur ou excès d'électrons au niveau de l'accepteur. Les exemples de groupes donneurs et de groupes accepteurs sont consignés dans le tableau 4. Une déficience d'électrons dans l'atome donneur, provoque une attirance de l'électron de l'atome d'hydrogène vers cet atome, augmentant ainsi la charge positive du proton, alors que l'excès d'électron dans le groupe accepteur augmente la charge négative le poussant à créer ainsi une interaction avec le proton. Cette façon de se lier, fait que la liaison hydrogène forte est parfois appelée liaisons hydrogène ionique. Les liaisons hydrogène fortes sont aussi formées quand la conformation de la molécule est telle qu'elle force les groupes donneurs et les groupes accepteurs neutres à se lier par le biais d'un atome d'hydrogène. Elles sont connues dans ce cas sous le nom de liaisons hydrogène fortes forcées.

I-4-2- LIAISONS HYDROGENE MODERÉES :

Les liaisons hydrogène modérées sont formées entre un donneur et un accepteur généralement neutres. L'atome donneur est relativement plus électronégatif que l'atome d'hydrogène est l'atome accepteur possède un doublé libre d'électrons. Ce sont les liaisons les plus communes en chimie et dans la nature. On les considère comme des liaisons hydrogène normaux par rapport aux deux autres catégories qui sont des exceptions minoritaires. Ce sont les composants les plus importants et les plus essentiels dans les molécules et les fonctions biologiques. Les exemples de groupes donneurs et de groupes accepteurs sont consignés dans le tableau 4.

I-4-3-LIAISONS HYDROGENE FAIBLES :

Les liaisons hydrogène faibles sont formées quand l'atome d'hydrogène est engagé dans une liaison covalente avec un atome légèrement plus électropositif que lui
comme dans C-H ou Si-H, ou quand l'accepteur n'a pas de doublets d'électrons libres, mais des électrons π comme dans un cycle aromatique. Les exemples de groupes donneurs et de groupes accepteurs engageant une liaison hydrogène faible sont donnés dans le tableau I-2.

Tableau I-2 : Groupes donneurs et accepteurs des différentes catégories de liaisons hydrogènes.

<table>
<thead>
<tr>
<th>Liaisons hydrogène fortes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donneurs et accepteurs</td>
</tr>
<tr>
<td>[F…H…F]</td>
</tr>
<tr>
<td>[H-F-H]</td>
</tr>
<tr>
<td>[O-H…O–]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>[O-H…O]</td>
</tr>
<tr>
<td>[N-H…N]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liaisons hydrogène modérées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donneurs et accepteurs</td>
</tr>
<tr>
<td>O-H, P-O-H, H-Ow-H</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Donneurs seulement</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄⁺</td>
</tr>
<tr>
<td>-NH₃⁺</td>
</tr>
<tr>
<td>NH₂⁺</td>
</tr>
<tr>
<td>S-H</td>
</tr>
</tbody>
</table>
Liaisons hydrogène faibles

<table>
<thead>
<tr>
<th>Donneurs</th>
<th>Accepteurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-H</td>
<td>C≡C</td>
</tr>
</tbody>
</table>

Protéines (chaîne latérale, acides nucléiques à bas pH)

| C-N(H) H | Amines primaires, pyrimidines, purines, barbiturates. |

Accepteurs seulement

| | Ethers, carbohyrdrates, oligo- et polysaccharides. |

| C≡O | Carboxylates, Acides aminés sous forme de zwitterions, acides carboxyliques, cétones, esters, N-oxides, pyrimidines, purines, nucléosides, nucléotides, acides nucléiques, peptides, protéines (chaîne principale). |

| X=O | Oxyanions, nitrates, chlorates, sulfates, phosphates. |

| N | Amines tertiaires. |

| N | Purines, pyrimidines, barbiturates, nucléosides, nucléotides, acides nucléiques. |

| N=O | Composés nitriques aromatiques. |

| S | Méthionine |
Dans les structures cristallines, les liaisons hydrogène fortes sont presque linéaires avec la seule possibilité d'un accepteur, alors que les liaisons hydrogène modérées peuvent impliquer deux accepteurs avec plusieurs modes de liaisons. Si les liaisons présentent la configuration de (I) ou de (II), de la figure 13, elles sont dites liaisons hydrogène à trois centres (three-center hydrogen bond), dans ce cas l'atome d'hydrogène est engagé dans trois liaisons, une covalente, et deux hydrogènes. L'atome d'hydrogène étant soumis à des forces attractives, il se situe dans le plan A, B1, B2 avec $\alpha_1 + \alpha_2 + \alpha_3 = 360^\circ$. Les liaisons hydrogène à trois centres présentant la configuration (II) sont dites chélatées. Les configurations (III), (IV) et (V) correspondent à des liaisons hydrogène à deux centres (two-center hydrogen bond) où l'atome d'hydrogène est engagé dans une liaison covalente et une liaison hydrogène ; elles sont aussi dites chélatées. La configuration (VI) est aussi dite liaison hydrogène chélatée et la configuration (VII) est dite liaison hydrogène tandem [27].

Figure 1-2 : Schéma des différentes configurations des liaisons hydrogène.
Les liaisons hydrogène à trois centres peuvent être vues comme une déficience en protons, c'est-à-dire plus d'atomes accepteurs que de protons. Ce sont les liaisons les plus communes dans les molécules biologiques. Les liaisons hydrogène à quatre centres (four-center hydrogen bonds), dans lesquelles il y'a présence de trois accepteurs, sont rarement observées dans les structures cristallines (<5%). Elles sont présentes quand tous les angles D-H…A sont supérieurs à 90° et que l’interaction H…A est plus longue que celle observée dans les liaisons hydrogène à trois centres. Dans certains cas cette interaction n'est pas considérée comme une liaison hydrogène.

La combinaison de liaisons hydrogène à trois centres et chélates (VIII) et (IX) (Figure. I-3) est aussi observée dans les structures cristallines mais elle est à très faible

![Figure I-3: Liaisons hydrogène à trois centres et chélates.](image)

I-6-DESCRIPTION D’UN RESEAU DE LIAISONS HYDROGENE DANS UNE STRUCTURE CRISTALLINE (THEORIE DES GRAPHES DU MODELE DES LIAISONS HYDROGENE) :

La chimie organique s'est classiquement basée sur la préparation et l'étude des propriétés des molécules individuelles. Cependant, la compréhension de la nature et de l’utilisation des interactions entre les molécules sont devenue dans le temps indispensable pour éclaircir certains phénomènes.

Une des plus fortes et des plus importantes interactions assurant la cohésion des structures des composés organiques est la liaison hydrogène. Ce type d'interaction est régi par des forces intermoléculaires dont les propriétés énergétiques et géométriques sont moins bien comprises que celles des interactions classiques. Les moyens pour caractériser, comprendre et prévoir les conséquences d'une telle interaction sont restés longtemps énigmatiques. Le besoin d'une méthode systématique pour l'établissement du modèle de liaisons hydrogène a poussé Etter à proposer une méthode d'établissement d'un graphe de
liaisons hydrogène (Etter, 1990) [28]. Cette méthode a été bien décrite et développée par Etter, McDonald et Bernstein en 1990, puis par Etter et par Bernstein en 1991 et par Bernstein et ses collaborateurs en 1995, avec comme support de leur méthode des exemples de son application à des composés déjà étudiés et contenant des liaisons hydrogène (Etter et al. 1990) [29], (Etter, 1991) [30], (Bernstein, 1991) [31] et (Bernstein et al. 1995) [32]. L'utilisation de la méthode préconisée par Etter et par Bernstein, nécessite la connaissance et la compréhension de la coopération du système de liaisons hydrogène dans la structure cristalline, c'est-à-dire la structure des liaisons hydrogène dans le cristal. Afin d'établir cette structure on doit tout d'abord passer par la connectivité (figure I-4) puis allé à la géométrie. On fait référence à la connectivité en parlant du modèle des liaisons hydrogène dans un cristal (hydrogen bonding pattern) [27].

Figure I-4: Exemple de modèle de liaisons hydrogène dans la cellulose.

Cette méthode permet l'identification du type particulier de la structure des liaisons hydrogène dans le cristal en utilisant des lettres et des chiffres :

1- Tous les modèles de liaisons hydrogène peuvent être décrits sous forme de chaînes (C), cycles (R), chaînes finies (D), et liaisons hydrogène intramoléculaires (S).

2- Le nombre de donneurs (d) et d'accepteurs (a) peut être déterminé et le plus petit nombre de liaisons hydrogène pour définir le modèle (n).

3- La combinaison de ces symboles forme le graphe des liaisons hydrogène $G^a_d(n)$ (où $G = C, R, D$ ou S). L'établissement du graphe du modèle des liaisons hydrogènes passe par plusieurs étapes :

1- Repérage des différentes liaisons hydrogène symétriquement indépendantes.

2- Identification du motif de chaque liaison en utilisant les notations décrites ci dessus.
3- Détermination du graphe unitaire du modèle des liaisons hydrogène.

4- Détermination du graphe binaire ou deuxième niveau du modèle des liaisons hydrogène en combinant les différentes liaisons. Le graphe binaire de base est celui mettant en jeu le plus petit degré et le graphe binaire complexe est celui mettant en jeu le plus grand degré.

Selon la complexité des structures, on peut passer à des niveaux supérieurs en combinant plusieurs liaisons hydrogène.

Cette méthode d'étude des liaisons hydrogène dans un empilement cristallin permet de décrire les réseaux plutôt compliqués d'une façon sténographique, facilitant ainsi la comparaison des différents composés et leur catalogage dans des banques de données. Elle apporte aussi un plus considérable dans l'élucidation de la relation entre les phénomènes observés au niveau d'une structure cristalline et les liaisons hydrogène (désordre, variation des paramètres de la maille…) [27].
II- LA PYRIDINE ET SES DERIVES

II-1- INTRODUCTION :

L'apport de la chimie hétérocyclique dans de multiples domaines est incontestable ; en effet, les hétérocycles constituent l’architecture de base de nombreux composés biologiques naturels tels que les acides nucléiques, les alcaloïdes comme la nicotine ou la caféine, ou encore les phéromones [33], particulièrement importantes dans la chimie des arômes et des parfums [34] (Coumarine, Galbazine, Tropional, Magnolan…) (Figure I-1).

![Diagramme de molécules hétérocycliques](image)

Figure I-1 : Exemples d’hétérocycle naturels et leurs sources.

L’industrie chimique a également puisé de la chimie hétérocyclique. Les Hétérocycles synthétiques sont largement utilisés dans les herbicides, les fongicides, les pesticides [35] et les colorants [36]. Quelques exemples de ces hétérocycles de synthèse et leurs rôles sont reportés ci-dessous (Figure II-2).
Figure II-2: exemples d’hétérocycles synthétiques et leur rôle.

La chimie des médicaments représente une très large part des hétérocycles de synthèse tant au niveau de l’image médicale [37] si l’on considère les hétérocycles possédant un atome radioactif, que bien-sûr la mise sur le marché de composés d’activité biologique (antibiotiques, antiviraux, antidépresseurs, antitenseurs, anticancéreux, etc.) [38].

En ces dernières années, les composés hétérocycliques azotés ont trouvé beaucoup d’applications dans l’industrie chimique grâce à leur grande stabilité. Parmi ces derniers la pyridine et ses dérivés occupent une place marquante. Les propriétés particulières de ces composés, intiment liées à la présence de l’azote, leur confèrent une vaste panoplie de potentialités chimiques et biologiques qui expliquent leur importance notamment dans les secteurs agrochimiques et pharmaceutiques [39].

La pyridine et ses dérivés ont fait l’objet de nombreuses études à cause de leurs activités biologiques, par exemple les études qui sont basées sur leurs différentes actions au niveau des récepteurs hormonaux ou neurotransmetteurs qui peuvent être mis en cause dans les maladies de Creutzfeld-Jacob, la maladie de Huntington, la maladie de Parkinson [40] ou bien encore la maladie d’Alzheimer [41]. Aussi, les dérivés de la pyridine sont présents dans plusieurs molécules biologiques comme par exemple dans les vitamines du complexe B (pyridoxine ou B6, acide nicotinique ou PP), la vitamine E, de nombreux alcaloïdes (nicotine, papavérine) ; les sucres pyrranosiques (glycopyrranosose) et des colorants naturels (anthocyanidines) [42].

Plusieurs pyridines d’intérêt commerciale ont trouvé leur applications dans les secteurs du marché ou la bio-activité est importante, comme dans les médicaments, les produits agricoles tels que : herbicides, insecticides, fongicides et régulateurs de croissance de plantes. Cependant, les pyridines ont également des applications en dehors du royaume des ingrédients.
bioactifs par exemple les polymères élaborés à partir du monomère pyridine ont connu une grande propagation grâce à leurs fonctions et leurs propriétés physiques. Les pyridines sont souvent employées en tant qu’intermédiaires chimiques pour la fabrication des produits de consommation finals [43].

II-2- STRUCTURE CHIMIQUE DE LA PYRIDINE ET DE SES DERIVES :

L’arrangement des atomes dans la pyridine ressemble au benzène sauf que dans l’anneau, l’ensemble H-C a été remplacé par un atome d’azote. Les substituants sont énumérés de 1 à 6 (figure II-3) ou bien ils sont indiqués par les symboles grecs α, β ou γ. Ces symboles grecs se rapportent à la position relative du substituant dans l’anneau azoté. Ils sont habituellement employés pour nommer les pyridines monosubstituées. En général, les alkyl pyridines servent de précurseurs, ils sont aussi employés en tant qu’intermédiaires dans la fabrication des produits finals. Il existe plusieurs composés d’alkyl pyridine qui sont d’une grande importance commerciale tels que : α-picoline (2), β-picoline (3), γ-picoline (4), 2,6-lutidine (5), 3,5-lutidine (6), 5-éthyl méthylpyridine (7) et 2, 4,6-collidine (8) (Figure II-3) [43].

![Pyridine structures](image)

Figure II-3 : exemples d’alkyl pyridine d’importance commerciale.

II-3- PROPRIETES PHYSIQUES :

La pyridine liquide et les alkyl pyridines sont considérés comme solvants dipolaires et aprotiques similaires au diméthyle sulfoxide. La plupart des pyridines forment un azéotrope significatif avec l’eau, permettant la séparation des mélanges des pyridines par la distillation par la vapeur qui ne pourrait pas être séparée par simple distillation. Le même effet azéotropique avec de l’eau permet également le séchage rapide des pyridines humides par distillation d’une petite quantité d’azéotrope de l’eau [43].

Beaucoup de propriétés physiques de la pyridine sont différentes de celles du benzène son homologue homocyclique, par exemple la pyridine a un point d’ébullition plus haut que le benzène et elle est miscible avec l’eau dans toutes les proportions à la température ambiante (Tableau II-1) [43].

Tableau II-1 : Quelques propriétés physiques de la pyridine.

<table>
<thead>
<tr>
<th>Propriété physique</th>
<th>valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enthalpie de fusion à -41.6 °C, KJ/MOL</td>
<td>8.2785</td>
</tr>
<tr>
<td>Enthalpie de vaporisation KJ/MOL à 25 °C</td>
<td>40.2</td>
</tr>
<tr>
<td>à 115.26 °C</td>
<td>35.11</td>
</tr>
<tr>
<td>La température critique</td>
<td>346.8</td>
</tr>
<tr>
<td>La pression critique</td>
<td>5.63</td>
</tr>
<tr>
<td>Enthalpie de la formation, gaz à 25 °C, KJ/MOL</td>
<td>140.37</td>
</tr>
<tr>
<td>Energie libre de Gibbs de la formation, gaz à 25 °C, KJ/MOL</td>
<td>190.48</td>
</tr>
<tr>
<td>Capacité de chaleur, gaz à 25 °C, J/(K.MOL)</td>
<td>78.23</td>
</tr>
<tr>
<td>Température d’inflammation, °C</td>
<td>550</td>
</tr>
<tr>
<td>Limite d’explosion,%</td>
<td>1.7-10.6</td>
</tr>
<tr>
<td>Tension superficielle, liquide à 25 °C</td>
<td>36.6</td>
</tr>
<tr>
<td>Viscosité liquide à 25 °C</td>
<td>0.878</td>
</tr>
<tr>
<td>Constante diélectrique, liquide à 25 °C, ε</td>
<td>13.5</td>
</tr>
<tr>
<td>Conductivité thermique, liquide à 25 °C, W/(K.m)</td>
<td>0.165</td>
</tr>
</tbody>
</table>

II-4- PROPRIETES CHIMIQUES :

La réactivité chimique des pyridines est une fonction de l’aromaticité de l’anneau ; la présence d’un atome dans l’anneau lui confère un caractère π-déficient, un grand moment dipolaire permanent, polarisabilité facile des électrons-π, activation des groupes fonctionnels attachés à l’anneau, et la présence d’électron-déficient sur les centres d’atome de carbone qui
se situent en position α et γ, les centres atomiques dans l’anneau peuvent subir facilement une attaque électrophile [43].

La paire d’électron libre dans la pyridine réagit avec les électrophiles sous des conditions convenables, avec les acides protoniques pour donner des sels simples, avec les acides de Lewis pour former des composés de coordination, et avec les métaux de transition pour former des ions complexes [43].

La nucléophilie et la basicité des pyridines peuvent être réduites par des groupes qui possèdent un grand encombrement stérique des groupes autour de l’atome d’azote tel que le Tert-butyle dans les positions 2 et 6. Les groupes comme le méthyle tendant à augmenter la basicité relative de la pyridine. L’électron retrait des substituants peut également réduire la basicité et la nucléophilie de la pyridine. Généralement les substituants hydrophobes sur l’anneau de pyridine réduisent la solubilité dans l’eau, ces derniers augmentent la polarité de la liaison hydrogène comme donneur ou accepteur [43].

II-5- L’acide 2-aminopyridine-3-carboxylique :

L’acide 2-aminopyridine-3-carboxylique est un dérivé di-substitué de la pyridine, connu sous le nom de l’acide 2-aminonicotinique ; sa structure cristalline effectuée par diffraction des rayons X sur monocristal, ainsi que son étude spectroscopique par diffusion inélastique des neutrons (INS), IR et Raman ont été reportés par Dobson et al.[44], Pawlukoje et al.[45].

Bien que nombreuses études structurales des sels de l’acide nicotinique et des acides minéraux ont été reportées dans la littérature], la structure du composé 2-Amino-3-carboxypyrindinium dihydrogenphosphate [46] est la seule qui a été obtenue par la réaction de l’acide 2-amino-nicotinique avec l’acide phosphorique (Tableau II-2).

Tableau II-2 : Paramètres de mailles et groupes d’espaces des sels des acides nicotinique et 2-amino-nicotinique avec les acides minéraux.

<table>
<thead>
<tr>
<th>Composé</th>
<th>Paramètres de maille</th>
<th>Groupe d'espaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acide 2-aminonicotinique [44]</td>
<td>a = 7.4460(10) Å</td>
<td>P2₁/c</td>
</tr>
<tr>
<td></td>
<td>b = 12.1722(6) Å</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c = 6.9261(7) Å</td>
<td></td>
</tr>
<tr>
<td></td>
<td>β = 108.930(10°)</td>
<td></td>
</tr>
<tr>
<td>Substance</td>
<td>Crystal Data</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td></td>
</tr>
</tbody>
</table>
| Acide 2-aminopyridine-3- carboxylate [45] | \(a = 7.4022(15) \) Å
\(b = 12.1414(24) \) Å
\(c = 6.7800(14) \) Å
\(\beta = 108.73(3) \)°
| P2\(_1/2\)n |
| 2-amino-3-carboxypyridinium dihydrogène phosphate [46] | \(a = 12.877 \) (3) Å
\(b = 4.658 \) (3) Å
\(c = 15.978 \) (2) Å
\(\beta = 99.43 \) (3)°
| P2\(_1/2\)n |
| Acide Bis(nicotin) hydrogène perchlorate [47] | \(a = 11.824 \) (3) Å
\(b = 9.6214 \) (11) Å
\(c = 13.669 \) (2) Å
\(\beta = 111.990 \) (18)°
| C2/C |
| Dinicotinium sulfate [48] | \(a = 6.9663(7) \) Å
\(b = 8.3306(14) \) Å
\(c = 12.5098(12) \) Å
\(\alpha = 101.253(11) \)°
\(\beta = 95.746(8) \)°
\(\gamma = 102.685(11) \)°
| P-1 |
| Nicotinium sulfate [49] | \(a = 12.158 \) (5) Å
\(b = 10.593 \) (4) Å
\(c = 7.001 \) (3) Å
| P2\(_1/2\)n |
| Nicotinium hydrogène sulfate [50] | \(a = 8.2654 \) (17) Å
\(b = 11.545 \) (2) Å
\(c = 9.4669 \) (19) Å
\(\beta = 109.43 \) (3)°
| P2\(_1/2\)n |
| Nicotinium dihydrogène phosphate [51] | \(a = 12.158 \) (5) Å
\(b = 10.593 \) (4) Å
\(c = 7.001 \) (3) Å
\(\beta = 102.35 \) (3)°
| P2\(_1/2\)n |
| Nicotinium nitrate monohydrate [52] | \(a = 6.6539 \) (7) Å
\(b = 12.3682 \) (15) Å
\(c = 10.1814 \) (15) Å
\(\beta = 100.967 \) (7)°
| P2\(_1/2\)n |
III- LA DIFRACTION DES RAYONS X

III-1- GENERALITES SUR LES RAYONS X

III-1-1- Historique:

Les rayons X ont été découverts par hasard en 1895 par "Wilhelm Röntgen" qui étudiait les rayons cathodiques dans un tube de décharge gazeuse sous haute tension. Bien que ce tube fût enchâssé dans un boîtier de carton noir, Röntgen nota qu’un écran de platinicyanure de baryum placé par hasard à proximité, émettait une lumière fluorescente lorsque le tube fonctionnait. Après avoir effectué d’autres expériences, il conclut que cette fluorescence était causée par un rayonnement invisible d’une nature plus pénétrante que le rayonnement ultraviolet. Il baptisa les rayons invisibles "rayons X" à cause de leur nature inconnue.

En 1913, "W. L. Bragg" découvrit que des substances dont la forme macroscopique était cristalline donnaient des motifs caractéristiques de rayonnement X réfléchi, et tout à fait différents de ceux produits par des liquides. Dans des matériaux cristallins, pour certaines longueurs d’ondes et certaines directions incidentes définies avec précision, il observe des pics intenses de rayonnement diffracté [53].

C’est immédiatement après la découverte de la diffraction des rayons X par les solides, que l’importance de la diffraction est apparue. Son rôle dans l’identification des solides a constitué l’une des propriétés la plus utilisée dans les sciences de la matière cristallisée [54].

III-1-2-Nature des rayons X :

Les rayons X sont des radiations électromagnétiques transversales comme la lumière mais d’une longueur d’onde bien plus courte (Figure 1). Vers les grandes longueurs d’onde, les tubes à rayons X peuvent émettre des rayonnements identiques à de la lumière ultraviolette et, à l’autre extrémité du spectre, des rayons semblables aux rayons émis par les corps radioactifs. Les rayons X utilisés en radiocrystallographie ont des longueurs d’onde comprises dans l’intervalle 0,5Å-2,5Å.

L’énergie radiante se manifeste selon les expériences sous l’un de ces deux aspects complémentaires :
L’aspect corpusculaire :
Un faisceau est assimilé à un ensemble de photons se propageant à la vitesse de la lumière, c. Chaque photon possède l’énergie $hv=\hbar/\lambda$. La fréquence des rayons X étant environ 1000 fois celle de rayons lumineux, le "photon X" possède une énergie bien plus grande que le photon de lumière.

L’aspect ondulatoire :
On considère ici des ondes caractérisées par leurs longueurs d’onde [55, 56] (figure III-1).

![Figure III-1 : Le spectre électromagnétique.](image)

III-1-3- Production des rayons X :
Dans l’étude des mécanismes de production des rayons X, il est important de préciser s’il s’agit de la production des rayons X à partir d’un tube à rayons X ou bien dans un synchrotron. En effet, dans un tube à rayons X comme dans un synchrotron, il existe une distribution continue de longueurs d’ondes appelée "spectre continu". Dans le cas d’un tube à rayons X, il apparaît de plus un second type de rayonnement ou "spectre caractéristique".

III-1-3-a- Les tubes à rayons X :
Ces équipements sont très répandus et représentent la quasi-totalité des sources de rayons X. Ils comportent essentiellement une enceinte sous vide, dans laquelle sont placées
deux électrodes entre lesquelles on peut établir une différence de potentiel élevée (quelques dizaines de kilo volts). On pose à la cathode, un filament de tungstène chauffé par une source de courant auxiliaire à basse tension (quelques volts). Celui-ci émet des électrons par effet thermoïonique. Les électrons sont accélérés dans l’enceinte du tube à rayon X par une différence de potentiel de quelques dizaines de milliers de volts. Ils viennent frapper l’anode (ou l’anticathode) à une très grande vitesse, produisant des rayons X par freinage rapide, interaction avec les atomes et conversion d’énergie [57].

Dans le phénomène d’interaction des électrons avec les atomes de l’anticathode, une faible portion de l’énergie incidente du faisceau d’électrons est réémise sous forme de rayons X. Il existe plusieurs types de tubes (tube scellé, tube à anode tournante...etc.)(Figure III-2).

![Diagramme de tube à rayon X](image)

Figure III-2 : Schéma d’un tube à rayon X.

III-1-3-b- Le rayonnement synchrotron :

Le rayonnement synchrotron est un autre exemple du champ électromagnétique rayonné par une particule accélérée. Dans ce cas, le rayonnement X est obtenu à partir d’électrons ou de positrons soumis à une accélération centripète dans le champ magnétique d’un anneau de stockage. Ces équipements d’un coût très élevé sont peu répandus. Ils sont considérés comme de très grands instruments et dédiés à une utilisation collective, souvent international. Citons en Europe : DCI (Orsay, France), DORIS (Hambourg, RFA), ESRF (European Synchrotron Radiation Facility-Grenoble, France)...etc. (Figure III-3) [58].

23
Figure III-3 : L’anneau du synchrotron de l’ESRF à Grenoble.

III-1-4-Interaction rayon X-matière :

Lorsqu’un faisceau de rayons X traverse un milieu matériel, plusieurs effets peuvent se produire: réfraction, diffusion de Rayleigh (diffusion cohérente), diffusion de Compton (diffusion incohérente), fluorescence, absorption et diffraction.

Les rayons X sont affaiblis par la traversée de la matière, peuvent subir deux transformations.

1. Ils restent des photons mais ils sont déviés de leur trajectoire :
 - sans perte d’énergie : c’est un rayonnement diffusé sans changement de longueur d’onde. C’est la diffusion de Rayleigh ou diffusion cohérente.

2. Ils sont absorbés par les atomes : c’est l’effet photoélectrique. Il y a alors réémission de deux sortes de rayonnements secondaires :
 - des électrons.
 - des rayons X de fluorescence dont la longueur d’onde est caractéristique de l’atome excité.

L’absorption totale est due à l’effet photoélectrique et à la diffusion qui est vraiment notable pour des courtes longueurs d’onde [55].
La diffraction des rayons X dans un cristal entraîne un phénomène de diffraction pour les raisons suivantes :

- La longueur d’onde des rayons X est du même ordre de grandeur que les dimensions des atomes et les distances entre atomes dans la matière à l’état condensé.

- Grande énergie du photon qui est comparable à l’énergie de liaison des couches électronique les plus profondes de l’atome.

III-1-5- Diffraction des rayons X :

La diffraction des rayons X par les cristaux est un phénomène important pouvant servir à indiquer les positions relatives des atomes dans un solide [58]. Les techniques utilisant la diffraction des rayons X sont universellement utilisées pour identifier la nature chimique et la structure des composés cristallisés. En effet, ces techniques ne s’appliquent qu’a des produits (roches, cristaux, minéraux, pigments, argiles...) présentant les caractéristiques de l’état cristallin, c’est-à-dire un arrangement périodique tridimensionnel des atomes. Ces derniers s’organisent en plans réticulaires plus ou moins denses qui sont désignés par leurs indices de Miller (h, k, l) dans un système de repère de l’espace. Ces techniques permettant aussi de distinguer les produits cristallisés des produits amorphes (verres...) lesquels ne donnent pas de diffraction de rayons X.

Pour observer une intensité diffractée dans la direction «θ», il faut que les interférences entre les rayons successifs soient constructives, c’est-à-dire que le déphasage entre les rayons successifs doit être multiple de 2θ. Ceci revient à dire que la différence de marche entre deux rayons successifs (la différence de longueur de trajet) doit être un multiple de leur longueur d’onde (Figure III-4).

On a alors la relation de Bragg (avec n : entier naturel non nul) : 2d (hkl) \(\sin \theta = n \lambda\).
Figure III-4: la diffraction d’un faisceau de rayon X correspond à une réflexion de l’onde incidente sur des plans atomiques denses.

Un cristal peut donc réfléchir les rayons X que sous certaines incidences : on parle de réflexion sélective. On peut exprimer cette relation dans le réseau réciproque; si on considère le nœud correspondant à la nième réflexion hkl, il faut que d*(hkl) ≤ 2/λ. La sphère centrée sur l’origine « E » du réseau réciproque et de rayon 2/λ, est la sphère de résolution. La sphère passant par « E », de rayon 1/λ et centrée sur l’origine «O » des vecteurs d’onde est « la sphère d’Ewald » (Figure III-5). Pour qu’il y ait réflexion il faut que le nœud considéré soit situé sur la surface de la sphère d’Ewald. Au cours d’une mesure usuelle, il faut que toute la sphère de résolution soit balayée [59].

Figure III-5 : la sphère d’Ewald permet une représentation simple de la condition de diffraction. Le cristal est situé en O, et l’origine du réseau réciproque est en E.

Chaque nœud ne diffracte que lorsqu’il est situé sur la sphère d’Ewald.
III-2– Principe de la détermination structurale :

III-2-1- Introduction :

Déterminer une structure cristalline, c’est pouvoir identifier la nature de chacun des atomes et fixer leurs coordonnées dans la maille élémentaire. Le problème serait simple si on pouvait connaître à la fois les modules des facteurs de structure et leur phase, rapportée à une origine déterminée. Alors, il suffirait par transformation de Fourier, de calculer la fonction « densité électronique » dans tout le volume de la maille et de localiser chacun des maxima de la fonction. Malheureusement, la seule quantité directement observable est l’intensité diffractée I(H). Par conséquent seuls les modules |F(H) | sont connus, et l’information de phase a été perdue. Déterminer une structure reviendra donc à déterminer les phases des facteurs de structure dont les modules sont connus [59].

Il faut trouver des artifices pour reconstituer, à partir des données expérimentales, la phase de l’onde diffractée. C’est un problème délicat mais pendant les 15 dernières années, les techniques de résolution des structures des monocristaux ont considérablement évolué. Les avances récentes (technologiques et informatiques) permettent maintenant de localiser des molécules plus complexes (protéines) et accélérer le temps d’exécution [54].

Divers programmes informatiques (SHELX, XTAL, NRCVAX, MULTAN CRYSTALS, JANA) basés sur des algorithmes itératifs complexes sont aujourd’hui à la disposition des cristallographes [59]. Ces différents programmes permettent la résolution d’une structure cristalline essentiellement par l’une des méthodes suivantes : méthode directe et méthode de Patterson.

Dans ce travail, nous avons utilisé pour la résolution de la structure du composé étudié les méthodes directes. Les paragraphes suivants seront consacrés à quelques notions sur ces méthodes.

- Méthodes directes :

Ces méthodes sont toutes basées sur le fait que la densité électronique est strictement positive ce qui implique un certain nombre de relations entre les facteurs de structures. L’étude statistique des amplitudes de ces facteurs permet de reconstituer partiellement les informations sur les phases et finalement une détermination approchée de la structure [60]. Le but de ces méthodes est de déterminer directement les phases des facteurs de structure et par la suite, la détermination de la structure sans avoir besoin d’informations préalables.
Dans le cas de ces méthodes d’autres facteurs sont utilisés à la place du facteur de structure \(F(H) \) : le facteur de structure normalisé \(E(H) \) et le facteur de structure unitaire \(U(H) \).

III-2-2- Etapes de la résolution structurale par les méthodes directes [61] :

Une résolution structurale par les méthodes directes passe généralement par les étapes suivantes :

- **Calculer les facteurs de structure normalisés :**

Les amplitudes \(|E(H)| \) sont calculées à partir des amplitudes \(|F_0| \) par la relation :

\[
|E(H)|^2 = |F(H)|^2 / |\varepsilon_H| < |F(H)|^2 > \exp(-2BS^2)
\]

Avec : \(S^2 = \sin^2(\theta/\lambda) \).

- **B facteur d’agitation thermique global**

\(<|F(H)|^2> : \) valeur moyenne de l’amplitude si les atomes sont considérés au repos c'est-à-dire qu’ils sont figés.

- **\(\varepsilon_H \) :** facteur dépendant du groupe ponctuel de symétrie.

Le nombre des \(E \) choisis pour la détermination des phases est normalement 4 \(X \) (le nombre des atomes indépendants) +100 (Dans le cas des structures tricliniques et monocliniques ce nombre peut augmenter).

- **Etablir les relations entre les phases :**

Les jeux des trois phases (invariant et semi-invariant) sont identifiés et enregistrés pour les utiliser ultérieurement. Chacune de ces relations est un terme dans la formule de tangente.

- **Trouver les réflexions qui vont être utilisées pour la détermination des phases :**

Les phases des réflexions avec les amplitudes \(|E(H)| \) les plus grandes sont les seules qui peuvent être déterminées avec une reliabilité acceptable.

Une estimation de la reliabilité de chaque phase est obtenue de la relation :

\[
\alpha(H) = 2N^{1/2}|E(H)| \left| \sum_k E(K).E(H-K) \right|
\]

Plus grande est la valeur de \(\alpha(H) \), plus fiable est la phase estimée.

- **Attribution des phases de départ (Starting phases):**
A toutes les phases à déterminer, sont attribuées des valeurs initiales aléatoires, qui servent également à définir l'origine et l'énanthiomorphe de la densité électronique obtenue. Il n'est pas prévu que le jeu de phases de départ attribuées de cette manière conduira toujours à un ensemble correct de phases après affinement, ainsi la procédure est répétée plusieurs fois. Le nombre de jeux pareils est normalement compris entre 30 et 200, mais beaucoup plus (ou moins) peut être nécessaire pour certaines structures. Un seul jeu correct est suffisant pour résoudre la structure.

➢ Détermination et affinement des phases :

Les phases de départ sont utilisées dans la formule de tangente pour déterminer des phases nouvelles, ce processus est alors répété par itération jusqu’à ce que les valeurs convergent vers des valeurs stables. Pour obtenir des valeurs de phases correctes, un poids est attribué à chaque réflexion. Ainsi, la formule de tangente s’écrit sous la forme :

\[\Phi(H) = \text{phase de } \Sigma_K w(K) \cdot w(H-K) \cdot E(K) \cdot E(H-K) \]

\(W(H) \) est le poids associé à la phase \(\Phi(H) \). Un poids correct est inversement proportionnel à la variance (\(\sigma^2 \)) ou, avec une bonne approximation, proportionnel à \(\alpha(H) \).

➢ Calcul de la figure de mérite (FOM) :

Chaque jeu de phases calculées à l’étape précédente est utilisé dans le calcul des figures de mérite qui sont de simples fonctions qui peuvent être calculées rapidement et données une idée sur le jeu de phases. Les FOM suivants sont parmi les plus utilisées :

\[R_{\alpha} = \sum_{H} |a(H) - a_\alpha(H)| / \Sigma a_\alpha(H) \quad (\text{avec } a_\alpha \text{ est } \alpha \text{ estimé}) \]

\[\Psi_{\alpha} = \sum_{H} \left| \sum_k E(K) \cdot E(H-K) \right| / \left(\sum_k \left| E(K) \cdot E(H-K) \right| \right)^{1/2} \]

➢ Interprétation des cartes de densité électronique :

Les meilleurs jeux de phases (tels que indiqués par les FOM) sont utilisés pour le calcul des cartes de densité électronique. Ces dernières sont examinées et interprétées en fonction de la structure moléculaire attendue en appliquant de simples critères de stéréochimie aux pics trouvés. La meilleure carte selon les FOM va révéler la plupart des positions atomiques.
III-2-3- Affinement de la structure :

Une fois la structure est déterminée, son affinement est réalisé par plusieurs procédés : affinement basé sur l’utilisation des séries de Fourier (Fourier et Fourier différences) ou affinement par la méthode des moindres carrées.

- Méthode des moindres carrés :

La méthode des moindres carrés, qui ne peut s’appliquer que si le nombre d’observations est supérieur au nombre de paramètres à améliorer, est à l’heure actuelle la seule méthode courante utilisée pour passer du modèle approché de la structure, obtenue par les méthodes de recherches fondées sur l’analyse de la fonction de Patterson, de l’atome lourd, des substitutions isomorphes ou sur la détermination approchée des phases par les méthodes directes [56].

L’affinement par cette méthode consiste à faire varier les paramètres (coordonnées atomiques, facteur de température, facteur d’échelle) qui gouvernent les facteurs de structure de manière à minimiser la fonction.

$$ R = \sum_i w(H) \left(|F_o(H)| - |K F_c(H)| \right)^2 $$

Dans laquelle \(w(H) \) désigne la pondération appliquée à chaque réflexion \(|F_o(H)| \) et \(K \) est le facteur d’échelle.

Si \(R \) est une fonction des paramètres \(u_1, u_2, u_3 \ldots \ u_n \) c’est-à-dire \(R = R(u_1, u_2, \ldots u_n) \), elle atteint le minimum lorsque toutes les dérivées partielles \(\partial R/\partial U_i \) sont nulles (i=1……n).

$$ \sum_i w(H) \Delta F(H) \partial \Delta F(H)/ \partial U_i = 0 \text{ avec } \Delta F(H) = |F_o(H)| - |K F_c (H)| $$

En fait, le problème consiste à connaître les valeurs \(u_1, u_2, u_3 \ldots \ u_n \) des paramètres suffisamment proches des valeurs correctes \(u_1, u_2, u_3 \ldots \ u_n \) et à trouver des corrections \(\Delta u_1, \Delta u_2, \Delta u_3 \ldots \Delta u_n \) qui mènent aux valeurs correctes ou au moins, permettent de s’en approcher encore plus. Les meilleures corrections \(\Delta U_i \) seront donc celles qui ramèneront les \(n \) valeurs des \(\partial R/\partial U_i \) aussi près que possible de zéro [58].
III-2-4- Critères de la qualité de l’affinement [59] :

- **Facteur de reliabilité** :

 L’affinement a pour objet de chercher les meilleures positions possibles des atomes. La fiabilité des calculs est mesurée par les facteurs de reliabilité R et RW (indice résiduel et indice résiduel pondéré).

 \[R = \frac{\sum |F_o - |F_c||}{\sum |F_o|} \]

 \[\text{Et} \quad R_W = \sum w \left(\frac{|F_o|^2 - |F_c|^2}{\sum w|F_o|^2} \right)^{1/2} \]

- **Facteur statistique de confiance S** (ou goodness of fit) :

 Défini par la relation \(S = \sum w \left(\frac{|F_o - |F_c||^2}{(m-p)} \right)^{1/2} \) (m est le nombre d’observations indépendantes et p le nombre de paramètres affinés du modèle), le facteur S est un critère important de la qualité de l’affinement. Si l’affinement est bon, S doit s’approcher de l’unité.

- **Densité électronique résiduelle finale \((\Delta p_{\text{max}}) \)** :

 Une dernière carte de série de Fourier différence permet de voir les résidus électroniques restants; le résidu maximal \((\Delta p_{\text{max}}) \) est toujours indiqué. Lorsqu’il est de l’ordre d’électron par Å\(^3\).
DEXIEME PARTIE

SYNTESE ET ETUDE STRUCTURAL DU COMPOSE BIS (2-AMINO-3-CARBOXYPYRIDINIUM) SULFATE
I-1- SYNTHESE :

Le composé Bis (2-amino-3-carboxypyridinium) sulfate trihydrate (figure I-1) a été obtenu par dissolution d’une quantité de l’acide 2-amino-pyridine-3-carboxylique dans l’eau à laquelle une quantité adéquate d’acide sulfurique (dans les proportions stœchiométriques c.-à-d. deux moles de l’amino acide et une mole de H₂SO₄) a été introduite en petites quantités sous chauffage et agitation magnétique. La réaction effectuée est la suivante :

\[2C₆H₆N₂O₂ + H₂SO₄ \rightarrow 2C₆H₇N₂O₃⁺, SO₄⁻², 3H₂O \]

![Figure I-1: Structure moléculaire du composé Bis (2-amino-3-carboxypyridinium) sulfate trihydrate.](image)

L’évaporation lente de la solution obtenue, dans une boîte de pétri laissée à l’air, a permis la formation d’aiguilles incolores bien cristallisées.

I-2- ETUDE CRISTALLOGRAPHIQUE :

I-2-1- ENREGISTREMENT DES INTENSITES :

Les intensités diffractées par un monocristal de forme d’aiguille de dimension (0.58x0.13x0.04) mm⁢³ ont été mesurées à l’aide d’un diffractomètre Bruker APEXII [62] utilisant la radiation monochromatique Kα du molybdène avec λ=0.71073 Å. Les mesures ont été effectuées avec θ allant de 3,1⁰ à 27,5⁰.

Les données cristallographiques sont présentées dans le tableau I-1.

I-2-2- RESOLUTION ET AFFINEMENT DE LA STRUCTURE :

La structure cristalline a été résolue à l’aide du programme WINGX [63]. Le modèle structural du composé a été proposé par le programme SIR2002 [64] et son affinement final, effectué avec le programme SHELXL97 [65], a conduit aux facteurs de réliabilité non pondéré R=3,1% et pondéré Rₓ=7,9%.
Tous les atomes de l’entité asymétrique ont été localisés dans les cartes de Fourier différences. Les positions et les facteurs d’agitation thermique anisotropes des atomes oxygène, azote et carbone ont été affinés (Tableaux I-2 et I-3).

Les hydrogènes des molécules d’eau ont été eux aussi affiné mais avec des facteurs d’agitation thermique isotrope $U_{iso}(H)=1.5U_{eq}(O)$; les autres hydrogènes, bien que localisés dans les cartes de Fourier différence, ont été introduits dans des positions calculées et traités par rapport à leurs atomes parents (C, N ou O) avec C-H=0.95Å, O-H=0.84Å et N-H=0.88Å ; et des facteurs d’agitation thermiques isotropes $U_{iso}(H)=1.2U_{eq}(C$ ou N) et $U_{iso}(H)=1.5U_{eq}(O)$ (Tableau I-2 et I-4).

Tableau I-1 : Données cristallographiques et conditions d'enregistrement et d'affinement du composé bis (2-amino-3-carboxypuridine) sulfate trihydraté.

<table>
<thead>
<tr>
<th>Données cristallographiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formule chimique</td>
</tr>
<tr>
<td>Masse molaire (g/mol)</td>
</tr>
<tr>
<td>Système cristallin</td>
</tr>
<tr>
<td>Groupe d’espace</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>D_x</td>
</tr>
<tr>
<td>Dimension du cristal</td>
</tr>
<tr>
<td>Forme et couleur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions d’enregistrement</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ (MoKα) (Å$^\circ$)</td>
</tr>
<tr>
<td>μ (mm$^{-1}$)</td>
</tr>
<tr>
<td>Température (K)</td>
</tr>
<tr>
<td>Diffractomètre</td>
</tr>
<tr>
<td>Ω scans</td>
</tr>
<tr>
<td>Nombre de :</td>
</tr>
<tr>
<td>Réflexions mesurées</td>
</tr>
<tr>
<td>Réflexions indépendantes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions d’affinement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affinément en</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>R_w</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>Nombre de paramètres affinés</td>
</tr>
<tr>
<td>Schéma de pondération</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>C1A</td>
</tr>
<tr>
<td>C1B</td>
</tr>
<tr>
<td>C2A</td>
</tr>
<tr>
<td>C2B</td>
</tr>
<tr>
<td>C3A</td>
</tr>
<tr>
<td>C3B</td>
</tr>
<tr>
<td>C4A</td>
</tr>
<tr>
<td>H4A</td>
</tr>
<tr>
<td>C4B</td>
</tr>
<tr>
<td>H4B</td>
</tr>
<tr>
<td>C5A</td>
</tr>
<tr>
<td>H5A</td>
</tr>
<tr>
<td>C5B</td>
</tr>
<tr>
<td>H5B</td>
</tr>
<tr>
<td>C6A</td>
</tr>
<tr>
<td>H6A</td>
</tr>
<tr>
<td>C6B</td>
</tr>
<tr>
<td>H6B</td>
</tr>
<tr>
<td>N1A</td>
</tr>
<tr>
<td>H11A</td>
</tr>
<tr>
<td>H12A</td>
</tr>
<tr>
<td>N1B</td>
</tr>
<tr>
<td>H11B</td>
</tr>
<tr>
<td>H12B</td>
</tr>
<tr>
<td>N2A</td>
</tr>
<tr>
<td>H2A</td>
</tr>
<tr>
<td>N2B</td>
</tr>
<tr>
<td>H2B</td>
</tr>
<tr>
<td>O1</td>
</tr>
<tr>
<td>O1A</td>
</tr>
<tr>
<td>H1A</td>
</tr>
<tr>
<td>O1B</td>
</tr>
<tr>
<td>H1B</td>
</tr>
<tr>
<td>O2</td>
</tr>
<tr>
<td>O1W</td>
</tr>
<tr>
<td>H1W</td>
</tr>
<tr>
<td>H2W</td>
</tr>
<tr>
<td>O2A</td>
</tr>
<tr>
<td>O2B</td>
</tr>
<tr>
<td>O3</td>
</tr>
<tr>
<td>O2W</td>
</tr>
<tr>
<td>H3W</td>
</tr>
<tr>
<td>H4W</td>
</tr>
<tr>
<td>O4</td>
</tr>
<tr>
<td>O3W</td>
</tr>
</tbody>
</table>

Tableau I-2 : Coordonnées atomique et facteurs d’agitation thermique équivalents et isotropes.

(Δ/σ)_{max} avec P = (F_0^2 + 2F_c^2)/3

Δp_{max} et Δp_{min}

Nombre des paires de Friedel 1790

Facteur de Flack 0.45 (6)
<table>
<thead>
<tr>
<th>H5W</th>
<th>0.239 (4)</th>
<th>0.271 (2)</th>
<th>0.1664 (11)</th>
<th>0.049*</th>
</tr>
</thead>
<tbody>
<tr>
<td>H6W</td>
<td>0.227 (4)</td>
<td>0.170 (2)</td>
<td>0.1557 (11)</td>
<td>0.049*</td>
</tr>
<tr>
<td>S1</td>
<td>0.79804 (7)</td>
<td>0.47766 (4)</td>
<td>0.263808 (18)</td>
<td>0.01992 (10)</td>
</tr>
</tbody>
</table>

Tableau I-3: Facteurs d’agitation thermique anisotropes.

<table>
<thead>
<tr>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U12</th>
<th>U13</th>
<th>U23</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1A</td>
<td>0.0196 (8)</td>
<td>0.0196 (8)</td>
<td>0.0197 (8)</td>
<td>−0.0003 (8)</td>
<td>−0.0009 (7)</td>
</tr>
<tr>
<td>C1B</td>
<td>0.0188 (9)</td>
<td>0.0236 (10)</td>
<td>0.009 (7)</td>
<td>0.0009 (7)</td>
<td>−0.0004 (7)</td>
</tr>
<tr>
<td>C2A</td>
<td>0.0205 (9)</td>
<td>0.0210 (9)</td>
<td>0.0207 (8)</td>
<td>−0.0023 (7)</td>
<td>−0.0018 (7)</td>
</tr>
<tr>
<td>C2B</td>
<td>0.0192 (9)</td>
<td>0.0212 (9)</td>
<td>0.0165 (8)</td>
<td>−0.0012 (7)</td>
<td>−0.0016 (7)</td>
</tr>
<tr>
<td>C3A</td>
<td>0.0203 (8)</td>
<td>0.0203 (8)</td>
<td>0.0196 (8)</td>
<td>−0.0009 (8)</td>
<td>−0.0001 (8)</td>
</tr>
<tr>
<td>C3B</td>
<td>0.0205 (9)</td>
<td>0.0199 (9)</td>
<td>0.0167 (8)</td>
<td>0.0008 (7)</td>
<td>−0.0006 (7)</td>
</tr>
<tr>
<td>C4A</td>
<td>0.0318 (10)</td>
<td>0.0239 (9)</td>
<td>0.0232 (9)</td>
<td>0.0002 (8)</td>
<td>−0.0036 (8)</td>
</tr>
<tr>
<td>C4B</td>
<td>0.0300 (11)</td>
<td>0.0261 (10)</td>
<td>0.0225 (9)</td>
<td>0.0020 (8)</td>
<td>−0.0008 (8)</td>
</tr>
<tr>
<td>C5A</td>
<td>0.0451 (12)</td>
<td>0.0192 (9)</td>
<td>0.0293 (10)</td>
<td>−0.0003 (9)</td>
<td>−0.0034 (9)</td>
</tr>
<tr>
<td>C5B</td>
<td>0.0336 (11)</td>
<td>0.0214 (10)</td>
<td>0.0294 (10)</td>
<td>0.0018 (8)</td>
<td>−0.0012 (8)</td>
</tr>
<tr>
<td>C6A</td>
<td>0.0354 (11)</td>
<td>0.0218 (9)</td>
<td>0.0266 (10)</td>
<td>0.0000 (8)</td>
<td>−0.0017 (9)</td>
</tr>
<tr>
<td>C6B</td>
<td>0.0278 (10)</td>
<td>0.0221 (9)</td>
<td>0.0241 (9)</td>
<td>0.0003 (8)</td>
<td>−0.0007 (8)</td>
</tr>
<tr>
<td>N1A</td>
<td>0.0465 (9)</td>
<td>0.0181 (8)</td>
<td>0.0188 (7)</td>
<td>0.0007 (8)</td>
<td>−0.0003 (8)</td>
</tr>
<tr>
<td>N1B</td>
<td>0.0436 (10)</td>
<td>0.0204 (8)</td>
<td>0.0171 (7)</td>
<td>0.0013 (8)</td>
<td>−0.0001 (7)</td>
</tr>
<tr>
<td>N2A</td>
<td>0.0256 (8)</td>
<td>0.0214 (7)</td>
<td>0.0175 (7)</td>
<td>0.0004 (7)</td>
<td>−0.0014 (6)</td>
</tr>
<tr>
<td>N2B</td>
<td>0.0270 (8)</td>
<td>0.0243 (8)</td>
<td>0.0162 (7)</td>
<td>0.0004 (6)</td>
<td>0.0004 (6)</td>
</tr>
<tr>
<td>O1</td>
<td>0.0404 (7)</td>
<td>0.0196 (9)</td>
<td>0.0181 (6)</td>
<td>−0.0016 (6)</td>
<td>−0.0021 (6)</td>
</tr>
<tr>
<td>O1A</td>
<td>0.0454 (8)</td>
<td>0.0252 (7)</td>
<td>0.0176 (6)</td>
<td>0.0011 (7)</td>
<td>−0.0006 (6)</td>
</tr>
<tr>
<td>O1B</td>
<td>0.0414 (8)</td>
<td>0.0250 (7)</td>
<td>0.0166 (6)</td>
<td>0.0008 (6)</td>
<td>−0.0005 (6)</td>
</tr>
<tr>
<td>O2</td>
<td>0.0508 (9)</td>
<td>0.0240 (7)</td>
<td>0.0184 (6)</td>
<td>0.0046 (6)</td>
<td>0.0021 (6)</td>
</tr>
<tr>
<td>O1W</td>
<td>0.0970 (15)</td>
<td>0.0245 (8)</td>
<td>0.0185 (7)</td>
<td>0.0102 (9)</td>
<td>−0.0078 (8)</td>
</tr>
<tr>
<td>O2A</td>
<td>0.0453 (8)</td>
<td>0.0226 (7)</td>
<td>0.0208 (6)</td>
<td>0.0020 (6)</td>
<td>0.0017 (6)</td>
</tr>
<tr>
<td>O2B</td>
<td>0.0363 (8)</td>
<td>0.0224 (7)</td>
<td>0.0212 (7)</td>
<td>0.0017 (6)</td>
<td>0.0004 (6)</td>
</tr>
<tr>
<td>O3</td>
<td>0.0274 (7)</td>
<td>0.0295 (8)</td>
<td>0.0332 (8)</td>
<td>−0.0038 (6)</td>
<td>0.0025 (6)</td>
</tr>
<tr>
<td>O2W</td>
<td>0.0264 (7)</td>
<td>0.0248 (7)</td>
<td>0.0297 (7)</td>
<td>−0.0016 (6)</td>
<td>0.0013 (7)</td>
</tr>
<tr>
<td>O4</td>
<td>0.0284 (7)</td>
<td>0.0260 (7)</td>
<td>0.0234 (7)</td>
<td>−0.0015 (6)</td>
<td>−0.0034 (5)</td>
</tr>
<tr>
<td>O3W</td>
<td>0.0538 (9)</td>
<td>0.0244 (8)</td>
<td>0.0193 (7)</td>
<td>−0.0026 (7)</td>
<td>−0.0042 (7)</td>
</tr>
<tr>
<td>S1</td>
<td>0.0259 (2)</td>
<td>0.0184 (2)</td>
<td>0.01552 (19)</td>
<td>−0.00133 (19)</td>
<td>−0.00044 (18)</td>
</tr>
</tbody>
</table>

Tableau I-4: Distances inter atomique (Å).

<table>
<thead>
<tr>
<th>Atome1-Atome2</th>
<th>Distance</th>
<th>Atome1-Atome2</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1A—O2A</td>
<td>1.214 (2)</td>
<td>C5B—C6B</td>
<td>1.395 (3)</td>
</tr>
<tr>
<td>C1A—O1A</td>
<td>1.317 (2)</td>
<td>C5B—H5B</td>
<td>0.95</td>
</tr>
<tr>
<td>C1A—C2A</td>
<td>1.488 (2)</td>
<td>C6A—H6A</td>
<td>0.95</td>
</tr>
<tr>
<td>C1B—O2B</td>
<td>1.217 (2)</td>
<td>C6B—H6B</td>
<td>0.95</td>
</tr>
<tr>
<td>C1B—O1B</td>
<td>1.316 (2)</td>
<td>N1A—H11A</td>
<td>0.88</td>
</tr>
<tr>
<td>C1B—C2B</td>
<td>1.491 (2)</td>
<td>N1A—H12A</td>
<td>0.88</td>
</tr>
<tr>
<td>C2A—C6A</td>
<td>1.375 (3)</td>
<td>N1B—H11B</td>
<td>0.88</td>
</tr>
<tr>
<td>C2A—C3A</td>
<td>1.425 (2)</td>
<td>N1B—H12B</td>
<td>0.88</td>
</tr>
<tr>
<td>C2B—C6B</td>
<td>1.377 (3)</td>
<td>N2A—H2A</td>
<td>0.88</td>
</tr>
<tr>
<td>C2B—C3B</td>
<td>1.430 (2)</td>
<td>N2B—H2B</td>
<td>0.88</td>
</tr>
<tr>
<td>C3A—N1A</td>
<td>1.320 (2)</td>
<td>O1—S1</td>
<td>1.4895 (13)</td>
</tr>
<tr>
<td>C3A—N2A</td>
<td>1.360 (2)</td>
<td>O1A—H1A</td>
<td>0.84</td>
</tr>
<tr>
<td>C3B—N1B</td>
<td>1.317 (2)</td>
<td>O1B—H1B</td>
<td>0.84</td>
</tr>
<tr>
<td>C3B—N2B</td>
<td>1.365 (2)</td>
<td>O2—S1</td>
<td>1.4662 (13)</td>
</tr>
<tr>
<td>Atome1-Atome2-Atome3</td>
<td>Angle</td>
<td>Atome1-Atome2-Atome3</td>
<td>Angle</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>C4A—N2A</td>
<td>1.351 (2)</td>
<td>O1W—H1W</td>
<td>0.82 (3)</td>
</tr>
<tr>
<td>C4A—C5A</td>
<td>1.357 (3)</td>
<td>O1W—H2W</td>
<td>0.75 (3)</td>
</tr>
<tr>
<td>C4A—H4A</td>
<td>0.95</td>
<td>O3—S1</td>
<td>1.4591 (14)</td>
</tr>
<tr>
<td>C4B—N2B</td>
<td>1.350 (2)</td>
<td>O2W—H3W</td>
<td>0.80 (3)</td>
</tr>
<tr>
<td>C4B—C5B</td>
<td>1.362 (3)</td>
<td>O2W—H4W</td>
<td>0.89 (3)</td>
</tr>
<tr>
<td>C4B—H4B</td>
<td>0.95</td>
<td>O4—S1</td>
<td>1.4877 (13)</td>
</tr>
<tr>
<td>C5A—C6A</td>
<td>1.394 (3)</td>
<td>O3W—H5W</td>
<td>0.77 (3)</td>
</tr>
<tr>
<td>C5A—H5A</td>
<td>0.95</td>
<td>O3W—H6W</td>
<td>0.85 (3)</td>
</tr>
</tbody>
</table>

Tableau I-5 : Angles de liaisons (°).

<table>
<thead>
<tr>
<th>Atome1-Atome2-atome3</th>
<th>Angle</th>
<th>Atome1-Atome2-Atome3</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2A—C1A—O1A</td>
<td>124.23 (16)</td>
<td>C2A—C6A—C5A</td>
<td>122.46 (18)</td>
</tr>
<tr>
<td>O2A—C1A—C2A</td>
<td>123.47 (16)</td>
<td>C2A—C6A—H6A</td>
<td>118.8</td>
</tr>
<tr>
<td>O1A—C1A—C2A</td>
<td>112.30 (15)</td>
<td>C5A—C6A—H6A</td>
<td>118.8</td>
</tr>
<tr>
<td>O2B—C1B—O1B</td>
<td>124.18 (16)</td>
<td>C2B—C6B—C5B</td>
<td>121.86 (18)</td>
</tr>
<tr>
<td>O2B—C1B—C2B</td>
<td>123.32 (16)</td>
<td>C2B—C6B—H6B</td>
<td>119.1</td>
</tr>
<tr>
<td>O1B—C1B—C2B</td>
<td>112.51 (15)</td>
<td>C5B—C6B—H6B</td>
<td>119.1</td>
</tr>
<tr>
<td>C6A—C2A—C3A</td>
<td>118.44 (16)</td>
<td>C3A—N1A—H11A</td>
<td>120</td>
</tr>
<tr>
<td>C6A—C2A—C1A</td>
<td>121.03 (16)</td>
<td>C3A—N1A—H12A</td>
<td>120</td>
</tr>
<tr>
<td>C3A—C2A—C1A</td>
<td>120.52 (15)</td>
<td>H11A—N1A—H12A</td>
<td>120</td>
</tr>
<tr>
<td>C6B—C2B—C3B</td>
<td>118.95 (16)</td>
<td>C3B—N1B—H11B</td>
<td>120</td>
</tr>
<tr>
<td>C6B—C2B—C1B</td>
<td>121.05 (16)</td>
<td>C3B—N1B—H12B</td>
<td>120</td>
</tr>
<tr>
<td>C3B—C2B—C1B</td>
<td>120.00 (15)</td>
<td>H11B—N1B—H12B</td>
<td>120</td>
</tr>
<tr>
<td>N1A—C3A—N2A</td>
<td>118.38 (15)</td>
<td>C4A—N2A—C3A</td>
<td>123.86 (15)</td>
</tr>
<tr>
<td>N1A—C3A—C2A</td>
<td>124.77 (15)</td>
<td>C4A—N2A—H2A</td>
<td>118.1</td>
</tr>
<tr>
<td>N2A—C3A—C2A</td>
<td>116.85 (15)</td>
<td>N2A—C3A—C2A</td>
<td>118.1</td>
</tr>
<tr>
<td>N1B—C3B—N2B</td>
<td>117.89 (16)</td>
<td>C4B—N2B—C3B</td>
<td>123.82 (16)</td>
</tr>
<tr>
<td>N1B—C3B—C2B</td>
<td>125.49 (15)</td>
<td>C4B—N2B—H2B</td>
<td>118.1</td>
</tr>
<tr>
<td>N2A—C4A—C5A</td>
<td>120.77 (17)</td>
<td>C1A—O1A—H1A</td>
<td>109.5</td>
</tr>
<tr>
<td>N2A—C4A—H4A</td>
<td>119.6</td>
<td>C1B—O1B—H1B</td>
<td>109.5</td>
</tr>
<tr>
<td>C5A—C4A—H4A</td>
<td>119.6</td>
<td>H1W—O1W—H2W</td>
<td>109 (3)</td>
</tr>
<tr>
<td>N2B—C4B—C5B</td>
<td>120.77 (17)</td>
<td>H3W—O2W—H4W</td>
<td>105 (2)</td>
</tr>
<tr>
<td>N2B—C4B—H4B</td>
<td>119.6</td>
<td>H5W—O3W—H6W</td>
<td>104 (3)</td>
</tr>
<tr>
<td>C5B—C4B—H4B</td>
<td>119.6</td>
<td>O3—S1—O2</td>
<td>111.42 (9)</td>
</tr>
<tr>
<td>C4A—C5A—C6A</td>
<td>117.56 (18)</td>
<td>O3—S1—O4</td>
<td>109.05 (8)</td>
</tr>
<tr>
<td>C4A—C5A—H5A</td>
<td>121.2</td>
<td>O2—S1—O4</td>
<td>109.93 (8)</td>
</tr>
<tr>
<td>C6A—C5A—H5A</td>
<td>121.2</td>
<td>O3—S1—O1</td>
<td>110.06 (9)</td>
</tr>
<tr>
<td>C4B—C5B—C6B</td>
<td>117.98 (18)</td>
<td>O2—S1—O1</td>
<td>108.68 (7)</td>
</tr>
<tr>
<td>C4B—C5B—H5B</td>
<td>121</td>
<td>O4—S1—O1</td>
<td>107.62 (8)</td>
</tr>
<tr>
<td>C6B—C5B—H5B</td>
<td>121</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1-3- DESCRIPTION DE LA STRUCTURE :

L’unité asymétrique de ce composé est constituée de deux cations organiques (C₉H₇N₂O₂⁺) symétriquement indépendants (A et B), d’un anion minéral (SO₄²⁻) et de trois molécules d’eaux (H₂O) (figure I-2).

![Figure I-2 : Unité asymétrique du composé Bis (2-amino-3-carboxypyridinium) sulfate trihydrate.](image)

La maille élémentaire contient quatre unités asymétriques qui en s’empilant suivant ses trois directions conduisent à une structure tridimensionnelle dont la cohésion est assurée grâce à des liaisons hydrogène intermoléculaires.

Le cristal étudié a été traité en tant qu’une macle d’inversion avec deux configurations différentes ; l’une constitue 45(6)% de la composition du cristal et l’autre 55(6)% (voir facteur de Flack dans le tableau I-1).

Les projections observées dans les figures (figure I-3, I-4 et I-5) illustrent l’enchainement des différentes entités. Les anions et les molécules d’eaux forment des feuillets qui s’étendent parallèles au plan (001) et qui sont liés les unes aux autres par l’intermédiaires des dimères cationiques. Les anions sulfates et les molécules d’eaux (H₂O2W), du même feuillet, s’alternent conduisant à des chaines infinies allongées le long de l’axe a.
Figure I-3 : Projection de la structure du composé étudié suivant l’axe a.

Figure I-4 : Projection de la structure du composé étudié suivant l’axe b.

Figure I-5 : L’enchaînement des anions sulfates et des molécules d’eau suivant l’axe c.
I-3-1- L’ENTITE ANIONIQUE :

L’atome du soufre occupe une position générale, il est lié à quatre atomes oxygène formant un tétraèdre en accord avec l’hybridation SP^3. Les distances S-O et les angles O-S-O varient respectivement entre 1.4591Å et 1.4895Å et 107.62° et 111.42° ; ces valeurs sont comparables à celles trouvées dans la littérature (Tableau I-5 et I-6, Figure IV-6).

![Figure I-6 : géométrie, distances et angles dans l’entité anionique.](image)

I-3-2- L’ENTITE CATIONIQUE :

Le cation 2-amino-3-carboxyprydinium est une entité plane présentant un système cyclique (Figure I-7), de géométrie semblable à celle rapportée dans la structure de l’acide 2-aminonicotinic acid [44] sauf pour les longueurs des liaisons C-O du groupement carboxylique. Dans la structure de l’acide 2-aminonicotinic acid, le COOH transfère son proton à l'atome d'azote du cycle menant à la formation d’un zwitterion. Les deux distances C-O dans ce cas sont $1.234(2) \text{Å}$ et $1.266(2) \text{Å}$ alors que dans la présente structure, elles sont $1.214(2) \text{Å}$ et $1.317(2) \text{Å}$ dans le cation A et $1.217(2) \text{Å}$ et $1.316(2) \text{Å}$ dans le cation B. Le tableau I-6 présente les angles de torsion dans les cations A et B.
Figure I-7 : Les deux entités cationiques (A et B).

Tableau I-6 : Angles de torsion dans les cations A et B.

<table>
<thead>
<tr>
<th>Atome1-atome2-atome3-atomé4</th>
<th>Angle de torsion</th>
<th>Atome1-atome2-atome3-atomé4</th>
<th>Angle de torsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2A—C1A—C2A—C6A</td>
<td>−178.3 (2)</td>
<td>C1B—C2B—C3B—N2B</td>
<td>−179.57 (16)</td>
</tr>
<tr>
<td>O1A—C1A—C2A—C6A</td>
<td>1.6 (3)</td>
<td>N2A—C4A—C5A—C6A</td>
<td>1.1 (3)</td>
</tr>
<tr>
<td>O2A—C1A—C2A—C3A</td>
<td>1.3 (3)</td>
<td>N2B—C4B—C5B—C6B</td>
<td>−0.1 (3)</td>
</tr>
<tr>
<td>O1A—C1A—C2A—C3A</td>
<td>−178.75 (18)</td>
<td>C3A—C2A—C6A—C5A</td>
<td>1.0 (3)</td>
</tr>
<tr>
<td>O2B—C1B—C2B—C6B</td>
<td>173.11 (18)</td>
<td>C1A—C2A—C6A—C5A</td>
<td>−179.38 (18)</td>
</tr>
<tr>
<td>O1B—C1B—C2B—C6B</td>
<td>−6.9 (2)</td>
<td>C4A—C5A—C6A—C2A</td>
<td>−2.1 (3)</td>
</tr>
<tr>
<td>O2B—C1B—C2B—C3B</td>
<td>−6.5 (3)</td>
<td>C3B—C2B—C6B—C5B</td>
<td>−0.1 (3)</td>
</tr>
<tr>
<td>O1B—C1B—C2B—C3B</td>
<td>173.45 (16)</td>
<td>C1B—C2B—C6B—C5B</td>
<td>−179.72 (17)</td>
</tr>
<tr>
<td>C6A—C2A—C3A—N1A</td>
<td>−179.65 (19)</td>
<td>C4B—C5B—C6B—C2B</td>
<td>−0.2 (3)</td>
</tr>
<tr>
<td>C1A—C2A—C3A—N1A</td>
<td>0.7 (3)</td>
<td>C5A—C4A—N2A—C3A</td>
<td>1.0 (3)</td>
</tr>
<tr>
<td>C6A—C2A—C3A—N2A</td>
<td>1.1 (3)</td>
<td>N1A—C3A—N2A—C4A</td>
<td>178.57 (18)</td>
</tr>
<tr>
<td>C1A—C2A—C3A—N2A</td>
<td>−178.53 (16)</td>
<td>C2A—C3A—N2A—C4A</td>
<td>−2.1 (3)</td>
</tr>
<tr>
<td>C6B—C2B—C3B—N1B</td>
<td>179.90 (18)</td>
<td>C5B—C4B—N2B—C3B</td>
<td>0.9 (3)</td>
</tr>
<tr>
<td>C1B—C2B—C3B—N1B</td>
<td>−0.5 (3)</td>
<td>N1B—C3B—N2B—C4B</td>
<td>179.60 (18)</td>
</tr>
<tr>
<td>C6B—C2B—C3B—N2B</td>
<td>0.8 (3)</td>
<td>C2B—C3B—N2B—C4B</td>
<td>−1.2 (3)</td>
</tr>
</tbody>
</table>

I-4- LES LIAISONS HYDROGÈNE :

Les projections de la structure (Figure I-3, I-4 et I-5) montrent la complexité du réseau de liaison hydrogène qui assure la cohésion de cet édifice cristallin. Comme le montre le tableau I-7, ces liaisons sont de type O-H...O, N-H...O et C-H...O intra et intermoléculaires : les liaisons N1A-H12A...O2A, C6A-H6A...O1A, C6B-H6B...O1B et N1B-H2B...O2B sont intra et tout les restes sont intermoléculaires. Ces liaisons hydrogène sont des liaisons modérées ou faibles. Les deux liaisons hydrogène les plus fortes sont O1A—H1A...O3W et O1B—H1B...O1W avec une distance égale à 1.69Å et des angles respectivement égale à 167° et 168° (tableau I-7).
Tableau I-7 : Liaisons hydrogène formées entre les différentes entités (distances en Å et angles en °).

<table>
<thead>
<tr>
<th>D-H….A</th>
<th>D-H</th>
<th>H….A</th>
<th>D—>A</th>
<th>D—H—>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1A—H1A···O3W°</td>
<td>0.84</td>
<td>1.69 2.</td>
<td>2.5152</td>
<td>167</td>
</tr>
<tr>
<td>O1B—H1B···O1W°</td>
<td>0.84</td>
<td>1</td>
<td>1.69 2.</td>
<td>2.5138 (18)</td>
</tr>
<tr>
<td>O1W—H1W···O2W°</td>
<td>0.82</td>
<td>(4)</td>
<td>1.93 (3)</td>
<td>2.754 (2)</td>
</tr>
<tr>
<td>O3W—H5W···O2W°</td>
<td>0.77</td>
<td>(3)</td>
<td>1.98 (3)</td>
<td>2.750 (2)</td>
</tr>
<tr>
<td>O1W—H2W···O4</td>
<td>0.75</td>
<td>(4)</td>
<td>2.03 (4)</td>
<td>2.752 (2)</td>
</tr>
<tr>
<td>O2W—H3W···O3iii</td>
<td>0.80</td>
<td>(3)</td>
<td>1.92 (3)</td>
<td>2.7151 (19)</td>
</tr>
<tr>
<td>O0W—H4W···O4</td>
<td>0.90</td>
<td>(3)</td>
<td>1.87 (3)</td>
<td>2.7675 (19)</td>
</tr>
<tr>
<td>O3W—H6W···O2sw</td>
<td>0.84</td>
<td>(2)</td>
<td>1.88 (2)</td>
<td>2.720 (2)</td>
</tr>
<tr>
<td>N2A—H2A···O1</td>
<td>0.88</td>
<td>1.92</td>
<td>2.7681 (18)</td>
<td>163</td>
</tr>
<tr>
<td>N2B—H2B···O1°</td>
<td>0.88</td>
<td>1.88</td>
<td>2.7419 (19)</td>
<td>167</td>
</tr>
<tr>
<td>N1A—H11A···O4</td>
<td>0.88</td>
<td>2.05</td>
<td>2.915 (2)</td>
<td>166</td>
</tr>
<tr>
<td>N1B—H11B···O2°</td>
<td>0.88</td>
<td>1.94</td>
<td>2.817 (2)</td>
<td>173</td>
</tr>
<tr>
<td>N1A—H12A···O2A</td>
<td>0.88</td>
<td>2.09</td>
<td>2.726 (2)</td>
<td>129</td>
</tr>
<tr>
<td>N1A—H12A···O2B</td>
<td>0.88</td>
<td>2.27</td>
<td>2.979 (2)</td>
<td>138</td>
</tr>
<tr>
<td>N1B—H12B···O2A</td>
<td>0.88</td>
<td>2.25</td>
<td>2.963 (2)</td>
<td>138</td>
</tr>
<tr>
<td>N1B—H12B···O2B</td>
<td>0.88</td>
<td>2.10</td>
<td>2.733 (2)</td>
<td>128</td>
</tr>
<tr>
<td>C4A—H4A···O3vi</td>
<td>0.95</td>
<td>2.46</td>
<td>3.143 (2)</td>
<td>129</td>
</tr>
<tr>
<td>C4B—H4B···O3iii</td>
<td>0.95</td>
<td>2.31</td>
<td>3.169 (2)</td>
<td>150</td>
</tr>
<tr>
<td>C6A—H6A···O1A</td>
<td>0.95</td>
<td>2.35</td>
<td>2.697 (2)</td>
<td>101</td>
</tr>
<tr>
<td>C6B—H6B···O1B</td>
<td>0.95</td>
<td>2.37</td>
<td>2.709 (2)</td>
<td>100</td>
</tr>
</tbody>
</table>

Codes de symétrie : (i) ½+x ; 1/2-y ; z ; (ii) 1-x ; ½+y ; ½-z ; (iii) -1+x ; y ; z ; (iv)1-x ; -1/2+y ; ½-z ; (v)1/2-x ; 1-y ; -1/2+z ; (vi) 2-x ; -1/2+y ; ½-z ; (vii) -1/2+x ; ½-y ; -z.

I-4-1- ENVIRONNEMENT DES DIFFERENTES ENTITES :

V ENVIRONNEMENT DE L'ANION :

L’anion est entourée par huit voisins : quatre cations (deux cations de type A et deux de type B) et quatre moléculles d’eau. Ces voisins sont liées à l’anion via dix liaisons hydrogène dans lesquelles les atomes d’oxygène de l’anion jouent le rôle d’accepteurs (Tableau I-7 et Figure I-8).

Figure I-8 : environnement de l’entité anionique.
ENVIRONNEMENT DU CATION (A ET B) :

Les deux types de cations (A et B) ont le même environnement : quatre voisins (un cation, deux anions et une molécule d’eau) avec lesquels le cation établi six liaisons hydrogène ; il est donneur dans cinq liaisons hydrogène et accepteur dans la sixième (Tableau I-7 et Figure I-9).

![Figure I-9 : L’environnement du l’entité cationique(A).](image)

ENVIRONNEMENT DES MOLECULES D'EAU :

Dans l’unité asymétrique, il existe trois molécules d’eau symétriquement indépendantes : H₂O1W, H₂O2W et H₂O3W. L’environnement des molécules H₂O1W et H₂O3W semblables (figure I-10 et I-11) ; chacun entre elle est entourée d’une molécule H₂O2W, d’un anion et d’un cation (de type A pour H₂O3W et de type B pour H₂O1W). Toutes les deux établissent trois liaisons hydrogène de type O-H…O ; elles sont donneurs dans deux parmi elles et accepteur dans la troisième (Tableau I-7).

![Figure I-10 : environnement de molécule H₂O1W](image)

![Figure I-11 : environnement de la molécule H₂O3W](image)
La molécule d’eau H$_2$O2W, quant à elle, possède un environnement complètement différent des deux précédentes ; elle n’est pas liée à un cation et ses quatre voisins sont deux molécules d’eau (une de type H$_2$O1W et l’autre de type H$_2$O3W) et deux sulfates : elle donne deux protons aux anions et reçoit deux des molécules d’eau (Tableau I-7 et Figure I-12).

Figure I-12 : environnement de la molécule H$_2$O2W.

I-5- GRAPHE DU MODELE DES LIAISONS HYDROGENES DE LA STRUCTURE:

La cohésion du réseau cristallin dans de la présente structure comme nous l’avons mentionné précédemment, est maintenue grâce aux interactions hydrogène intermoléculaires. Ces dernières conduisent à la formations de modèles qui d’après la théorie des graphes, peuvent être décrits par des cycles de différentes tailles $R^3_d(10)$, $R^2_a(8)$ et $R^2_e(4)$ (figure I-3 et I-5). Le premier type de cycle $R^3_d(10)$ contient quatre donneurs ($d=4$) et trois accepteurs ($a=3$) et dix liaisons ($n=10$). Le second type $R^2_e(8)$, renferme deux donneurs et deux accepteurs et huit liaisons. Le dernier type $R^2_a(4)$ est de taille plus petite que ses précédents avec deux donneurs et deux accepteurs et seulement quatre liaisons ; c’est le cycle formé dans le dimère cationique.
CONCLUSION :

Cette étude nous a permis d’approfondir nos connaissances préalables et d’acquérir de nouveaux concepts théoriques sur la diffraction des rayons X sur monocristaux et son application à la caractérisation des composés hybrides à l’échelle microscopique.

Elle est également une introduction à l’étude des liaisons hydrogène que nombreuses études ont confirmé leurs influences incontestables sur la construction des cristaux et sur leurs propriétés ; la théorie des graphes étant la méthode la plus efficace pour la description des réseaux formés par ces liaisons, sa maîtrise est devenue une obligation.

Nous avons appliqué ces aspects théoriques à l’étude cristallographique de la structure du composé Bis (2-amino-3-carboxypyridinium) sulfate trihydrate en utilisant des programmes de résolution et d’affinement des structures basés sur les méthodes directes et les moindres carrés.

Lors de la description de cette nouvelle structure nous n’avons utilisé qu’un nombre restreint de notions de la théorie des graphes, cependant une étude rigoureuse de cette structure et des structures semblables demandera plus de temps et plus de maîtrise de cette théorie pour pouvoir l’appliquer.
REFERENCES BIBLIOGRAPHIQUES

Theoretical treatments of hydrogen bonding. p: 112.

Troisième edition.

[28] Etter, M.C., MacDonald, J.C., Bernstein, J. (1990). Graph-set analysis of hydrogen-

Engl. 34, 1555-73.

Chimique. 4,4.

[56] Lien sur internet: Organic chemistry online.

RESUME

Au cours de notre travail, nous avons synthétisé et caractérisé par diffraction des rayons X sur monocristal un nouveau composé hybride Bis (2-amino-3-carboxypyrindinium) sulfate trihydrate.

Le but de ce travail est d’étudier le réseau de liaisons hydrogène qui assurent la cohésion de cette structure cristalline par la méthode des graphes du modèle des liaisons hydrogène développée par Bernstein, Etter et leurs collaborateurs.

Mots clés : composés hybrides, acide 2-aminonicotinique, diffraction des rayons X, liaisons hydrogène, théorie des graphes.

ABSTRACT

During this study, we have synthesized and characterized by the use of X-ray diffraction on single crystal, a new hybrid compound: (2-amino-3-carboxypyrindinium) sulphate trihydrate.

The aim of this work is to study the hydrogen bonds which ensure the cohesion of the crystalline network by the help of the graph-set theory developed by Bernstein, Etter and their collaborators.

Keys words: hybrid compounds, 2-aminonicotinic acid, X-rays diffraction, hydrogen bonds, graph-set theory.

ملخص

في هذا العمل قمنا بتحضير كبريت يحيجين جديد انتشلاقه من حمض الكبريتيك و حمض 2-امينونيكوتنيك و

باستعمال حيود الأشعة السينية تم تحديد بنيته البلورية.

إن الهدف من هذا العمل هو دراسة الروابط الهيدروجينية التي تضمن ترابط هذه البنية البلورية و استعمالا لأجل ذلك نظرية " التحليل البياني لنموذج الروابط الهيدروجينية" المبتكرة من طرف "برنتشتاين و ايتير و معاونهما".

الكلمات المفتاحية : الروابط الهيدروجينية. نموذج التحليل البياني. مركبات هجينية. حمض 2-امينونيكوتنيك. حيود الأشعة السينية.